These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 24950343)

  • 1. Extracellularly activatable nanocarriers for drug delivery to tumors.
    Abouelmagd SA; Hyun H; Yeo Y
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1601-1618. PubMed ID: 24950343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.
    Fang Z; Wan LY; Chu LY; Zhang YQ; Wu JF
    Expert Opin Drug Deliv; 2015; 12(12):1943-53. PubMed ID: 26193970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy.
    Du JZ; Mao CQ; Yuan YY; Yang XZ; Wang J
    Biotechnol Adv; 2014; 32(4):789-803. PubMed ID: 23933109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy.
    Dinakar YH; Karole A; Parvez S; Jain V; Mudavath SL
    Life Sci; 2022 Dec; 310():121133. PubMed ID: 36306866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery.
    Gullotti E; Yeo Y
    Mol Pharm; 2009; 6(4):1041-51. PubMed ID: 19366234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular stability of nanoparticulate drug carriers.
    Liu KC; Yeo Y
    Arch Pharm Res; 2014 Jan; 37(1):16-23. PubMed ID: 24214175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy.
    Luo C; Sun J; Sun B; He Z
    Trends Pharmacol Sci; 2014 Nov; 35(11):556-66. PubMed ID: 25441774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms.
    Chen X; Lei S; Lin J; Huang P
    Expert Opin Drug Deliv; 2022 Nov; 19(11):1487-1504. PubMed ID: 36214740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Responsive nanoparticles for drug delivery.
    Gao W; Chan JM; Farokhzad OC
    Mol Pharm; 2010 Dec; 7(6):1913-20. PubMed ID: 20836539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives.
    El-Sawy HS; Al-Abd AM; Ahmed TA; El-Say KM; Torchilin VP
    ACS Nano; 2018 Nov; 12(11):10636-10664. PubMed ID: 30335963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review.
    Singh D; Sharma Y; Dheer D; Shankar R
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129901. PubMed ID: 38316328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo.
    Chen WL; Yang SD; Li F; Qu CX; Liu Y; Wang Y; Wang DD; Zhang XN
    Acta Biomater; 2018 Nov; 81():219-230. PubMed ID: 30267887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers.
    Chen J; Ding J; Xiao C; Zhuang X; Chen X
    Biomater Sci; 2015 Jul; 3(7):988-1001. PubMed ID: 26221934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy.
    Meng F; Han N; Yeo Y
    Expert Opin Drug Deliv; 2017 Mar; 14(3):427-446. PubMed ID: 27476442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.
    Elzoghby AO; Hemasa AL; Freag MS
    J Control Release; 2016 Dec; 243():303-322. PubMed ID: 27794493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrates based stimulus responsive nanocarriers for cancer-targeted chemotherapy: a review of current practices.
    Zhang CW; Zhang JG; Yang X; Du WL; Yu ZL; Lv ZY; Mou XZ
    Expert Opin Drug Deliv; 2022 Jun; 19(6):623-640. PubMed ID: 35611662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing colon-specific delivery systems for anticancer drug-loaded nanoparticles: an evaluation of alginate carriers.
    Ma Y; Coombes AG
    J Biomed Mater Res A; 2014 Sep; 102(9):3167-76. PubMed ID: 24124007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-sensitive nanopreparations for combination cancer therapy.
    Jhaveri A; Deshpande P; Torchilin V
    J Control Release; 2014 Sep; 190():352-70. PubMed ID: 24818767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.