BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 24950426)

  • 21. Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes.
    Chen CL; Perasso R; Qu LH; Amar L
    J Mol Biol; 2007 Jun; 369(3):771-83. PubMed ID: 17459411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal structure of the octamer [r(guauaca)dC]2 with six Watson-Crick base-pairs and two 3' overhang residues.
    Shi K; Biswas R; Mitra SN; Sundaralingam M
    J Mol Biol; 2000 May; 299(1):113-22. PubMed ID: 10860726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(9):1474-99. PubMed ID: 23909623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs.
    Kondo J; Tada Y; Dairaku T; Saneyoshi H; Okamoto I; Tanaka Y; Ono A
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13323-6. PubMed ID: 26448329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.
    Bhattacharyya D; Halder S; Basu S; Mukherjee D; Kumar P; Bansal M
    J Comput Aided Mol Des; 2017 Feb; 31(2):219-235. PubMed ID: 28102461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Base pairs and pseudo pairs observed in RNA-ligand complexes.
    Kondo J; Westhof E
    J Mol Recognit; 2010; 23(2):241-52. PubMed ID: 19701919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BPS: a database of RNA base-pair structures.
    Xin Y; Olson WK
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D83-8. PubMed ID: 18845572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and properties of the simplified nucleic acid glycol nucleic acid.
    Meggers E; Zhang L
    Acc Chem Res; 2010 Aug; 43(8):1092-102. PubMed ID: 20405911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A DNA hairpin with a single residue loop closed by a strongly distorted Watson-Crick G x C base-pair.
    El Amri C; Mauffret O; Monnot M; Tevanian G; Lescot E; Porumb H; Fermandjian S
    J Mol Biol; 1999 Nov; 294(2):427-42. PubMed ID: 10610769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes.
    Kimsey IJ; Petzold K; Sathyamoorthy B; Stein ZW; Al-Hashimi HM
    Nature; 2015 Mar; 519(7543):315-20. PubMed ID: 25762137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational features of the four successive non-Watson-Crick base pairs in RNA duplex.
    Fujii S; Tanaka Y; Uesugi S; Tanaka T; Sakata T; Hiroaki H
    Nucleic Acids Symp Ser; 1992; (27):63-4. PubMed ID: 1283916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: implications for the fidelity of transcription and CRISPR/Cas9 gene editing.
    Szekely O; Rangadurai AK; Gu S; Manghrani A; Guseva S; Al-Hashimi HM
    Nucleic Acids Res; 2024 Mar; 52(5):2672-2685. PubMed ID: 38281263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches.
    Pan B; Mitra SN; Sundaralingam M
    J Mol Biol; 1998 Nov; 283(5):977-84. PubMed ID: 9799637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.