BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24951497)

  • 1. Intestinal and renal handling of oxalate loads in normal individuals and stone formers.
    Knight J; Holmes RP; Assimos DG
    Urol Res; 2007 Jun; 35(3):111-7. PubMed ID: 17431604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the PKA signaling pathway stimulates oxalate transport by human intestinal Caco2-BBE cells.
    Arvans D; Alshaikh A; Bashir M; Weber C; Hassan H
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C372-C379. PubMed ID: 31825656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corin Deficiency Diminishes Intestinal Sodium Excretion in Mice.
    Gu X; Wang K; Li W; He M; Zhou T; Liu M; Wu Q; Dong N
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of drinking bicarbonate-rich mineral water in calcium oxalate stone formers: an open label prospective randomized controlled study in an Asian cohort.
    Lu Y; Sundaram P; Li H; Chong TW
    Int Urol Nephrol; 2022 Sep; 54(9):2133-2140. PubMed ID: 35781772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP.
    Stephens CE; Whittamore JM; Hatch M
    Physiol Rep; 2021 Apr; 9(7):e14828. PubMed ID: 33904662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsequent urinary stone events are predicted by the magnitude of urinary oxalate excretion in enteric hyperoxaluria.
    D'Costa MR; Kausz AT; Carroll KJ; Ingimarsson JP; Enders FT; Mara KC; Mehta RA; Lieske JC
    Nephrol Dial Transplant; 2021 Dec; 36(12):2208-2215. PubMed ID: 33367720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal models of naturally occurring stone disease.
    Alford A; Furrow E; Borofsky M; Lulich J
    Nat Rev Urol; 2020 Dec; 17(12):691-705. PubMed ID: 33159170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-125a-5p: a novel regulator of SLC26A6 expression in intestinal epithelial cells.
    Anbazhagan AN; Priyamvada S; Borthakur A; Saksena S; Gill RK; Alrefai WA; Dudeja PK
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C200-C208. PubMed ID: 31042422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia.
    Whittamore JM; Stephens CE; Hatch M
    Am J Physiol Gastrointest Liver Physiol; 2019 Jan; 316(1):G82-G94. PubMed ID: 30383413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria.
    Milliner D; Hoppe B; Groothoff J
    Urolithiasis; 2018 Aug; 46(4):313-323. PubMed ID: 28718073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease?
    Peck AB; Canales BK; Nguyen CQ
    Urolithiasis; 2016 Feb; 44(1):45-50. PubMed ID: 26645869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease.
    Holmes RP; Knight J; Assimos DG
    Urolithiasis; 2016 Feb; 44(1):27-32. PubMed ID: 26614109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery.
    Hatch M
    Exp Physiol; 2014 Sep; 99(9):1163-7. PubMed ID: 24951497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sel1-like proteins and peptides are the major
    Arvans D; Chang C; Alshaikh A; Tesar C; Babnigg G; Wolfgeher D; Kron S; Antonopoulos D; Bashir M; Cham C; Musch M; Chang E; Joachimiak A; Hassan H
    Am J Physiol Cell Physiol; 2023 Jul; 325(1):C344-C361. PubMed ID: 37125773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hyperoxaluria and renal calculi].
    Buño Soto A; Torres Jiménez R; García Puig J; Mateos Antón F
    Arch Esp Urol; 1996 Sep; 49(7):707-26. PubMed ID: 9020008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria.
    Bashir M; Meddings J; Alshaikh A; Jung D; Le K; Amin R; Ratakonda S; Sharma S; Granja I; Satti M; Asplin J; Hassan H
    Am J Physiol Gastrointest Liver Physiol; 2019 Jan; 316(1):G1-G14. PubMed ID: 30307745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man.
    Whittamore JM; Hatch M
    Urolithiasis; 2017 Feb; 45(1):89-108. PubMed ID: 27913853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxalate metabolism in renal stone disease with special reference to calcium metabolism and intestinal absorption.
    Lindsjö M
    Scand J Urol Nephrol Suppl; 1989; 119():1-53. PubMed ID: 2669121
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.