These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 2495150)
1. Regional neuroleptic microinjections indicate a role for nucleus accumbens in lateral hypothalamic self-stimulation reward. Stellar JR; Corbett D Brain Res; 1989 Jan; 477(1-2):126-43. PubMed ID: 2495150 [TBL] [Abstract][Full Text] [Related]
2. Effects of accumbens DALA microinjections on brain stimulation reward and behavioral activation in intact and 6-OHDA treated rats. Johnson PL; Stellar JR Psychopharmacology (Berl); 1994 May; 114(4):665-71. PubMed ID: 7855230 [TBL] [Abstract][Full Text] [Related]
3. Differences in sensitivity to neuroleptic blockade: medial forebrain bundle versus frontal cortex self-stimulation. Corbett D Behav Brain Res; 1990 Jan; 36(1-2):91-6. PubMed ID: 2302325 [TBL] [Abstract][Full Text] [Related]
4. Effects of dopamine depletion from the caudate-putamen and nucleus accumbens septi on the acquisition and performance of a conditional discrimination task. Robbins TW; Giardini V; Jones GH; Reading P; Sahakian BJ Behav Brain Res; 1990 May; 38(3):243-61. PubMed ID: 2114120 [TBL] [Abstract][Full Text] [Related]
5. Effects of peripheral and central dopamine blockade on lateral hypothalamic self-stimulation: evidence for both reward and motor deficits. Stellar JR; Kelley AE; Corbett D Pharmacol Biochem Behav; 1983 Mar; 18(3):433-42. PubMed ID: 6835998 [TBL] [Abstract][Full Text] [Related]
6. CCK-8 injected into the nucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic-neuroleptic treated rats. Weiss F; Ettenberg A; Koob GF Psychopharmacology (Berl); 1989; 99(3):409-15. PubMed ID: 2574480 [TBL] [Abstract][Full Text] [Related]
7. Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems. Koob GF; Simon H; Herman JP; Le Moal M Brain Res; 1984 Jun; 303(2):319-29. PubMed ID: 6430466 [TBL] [Abstract][Full Text] [Related]
8. Apomorphine-induced facilitation of intracranial self-stimulation following dopamine denervation of the nucleus accumbens. Strecker RE; Roberts DC; Koob GF Pharmacol Biochem Behav; 1982 Nov; 17(5):1015-8. PubMed ID: 6817349 [TBL] [Abstract][Full Text] [Related]
9. Opposite effects of prefrontal cortex and nucleus accumbens infusions of flupenthixol on stimulant-induced locomotion and brain stimulation reward. Duvauchelle CL; Levitin M; MacConell LA; Lee LK; Ettenberg A Brain Res; 1992 Mar; 576(1):104-10. PubMed ID: 1515903 [TBL] [Abstract][Full Text] [Related]
10. Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding. Beninger RJ; Ranaldi R Behav Brain Res; 1993 Jun; 55(2):203-12. PubMed ID: 8395180 [TBL] [Abstract][Full Text] [Related]
11. 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. Breese GR; Duncan GE; Napier TC; Bondy SC; Iorio LC; Mueller RA J Pharmacol Exp Ther; 1987 Jan; 240(1):167-76. PubMed ID: 3100767 [TBL] [Abstract][Full Text] [Related]
12. The effects of feeding and rewarding brain stimulation on lateral hypothalamic unit activity in freely moving rats. Sasaki K; Ono T; Muramoto K; Nishino H; Fukuda M Brain Res; 1984 Nov; 322(2):201-11. PubMed ID: 6150748 [TBL] [Abstract][Full Text] [Related]
13. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Taylor JR; Robbins TW Psychopharmacology (Berl); 1986; 90(3):390-7. PubMed ID: 3097729 [TBL] [Abstract][Full Text] [Related]
14. Depletion of dopamine in the caudate nucleus but not in nucleus accumbens impairs reaction-time performance in rats. Amalric M; Koob GF J Neurosci; 1987 Jul; 7(7):2129-34. PubMed ID: 3112323 [TBL] [Abstract][Full Text] [Related]
15. Antagonization of the behavioral activation produced by direct stimulation of forebrain dopamine receptors caused by intraaccumbens injections of neurotensin. Ervin GN; Nemeroff CB Neuropsychopharmacology; 1988 Sep; 1(3):243-50. PubMed ID: 3150806 [TBL] [Abstract][Full Text] [Related]
16. Enhanced dopamine receptor activation in accumbens and frontal cortex has opposite effects on medial forebrain bundle self-stimulation. Olds ME Neuroscience; 1990; 35(2):313-25. PubMed ID: 2199840 [TBL] [Abstract][Full Text] [Related]
17. Effects of nucleus accumbens amphetamine on lateral hypothalamic brain stimulation reward. Colle LM; Wise RA Brain Res; 1988 Sep; 459(2):361-8. PubMed ID: 3179710 [TBL] [Abstract][Full Text] [Related]
18. Time course of alpha-flupenthixol action explains "response artifacts" of neuroleptic action on brain stimulation reward. Science; 1983 Dec; 222(4629):1251-4. PubMed ID: 6648532 [No Abstract] [Full Text] [Related]
19. Dissociation of the attentional and motivational effects of pimozide on the threshold for rewarding brain stimulation. Bird M; Kornetsky C Neuropsychopharmacology; 1990 Feb; 3(1):33-40. PubMed ID: 2137697 [TBL] [Abstract][Full Text] [Related]
20. N-methyl-D-aspartic acid-induced lesions of the nucleus accumbens and/or ventral pallidum fail to attenuate lateral hypothalamic self-stimulation reward. Johnson PI; Stellar JR Brain Res; 1994 May; 646(1):73-84. PubMed ID: 8055342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]