BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24951537)

  • 1. Acceleration of an aldo-keto reductase by minimal loop engineering.
    Krump C; Vogl M; Brecker L; Nidetzky B; Kratzer R
    Protein Eng Des Sel; 2014 Jul; 27(7):245-8. PubMed ID: 24951537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochemistry; 2002 Jul; 41(28):8785-95. PubMed ID: 12102621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The xylose reductase (AKR2B5) structure: homology and divergence from other aldo-keto reductases and opportunities for protein engineering.
    Wilson DK; Kavanagh KL; Klimacek M; Nidetzky B
    Chem Biol Interact; 2003 Feb; 143-144():515-21. PubMed ID: 12604237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic alpha-hydroxy esters and improvement of its efficiency by protein engineering.
    Kratzer R; Nidetzky B
    Chem Commun (Camb); 2007 Mar; (10):1047-9. PubMed ID: 17325801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.
    Kratzer R; Leitgeb S; Wilson DK; Nidetzky B
    Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis.
    Nidetzky B; Mayr P; Neuhauser W; Puchberger M
    Chem Biol Interact; 2001 Jan; 130-132(1-3):583-95. PubMed ID: 11306077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.
    Pival SL; Klimacek M; Nidetzky B
    Biochem J; 2009 Jun; 421(1):43-9. PubMed ID: 19368528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a novel erythrose reductase from Candida magnoliae.
    Lee JK; Kim SY; Ryu YW; Seo JH; Kim JH
    Appl Environ Microbiol; 2003 Jul; 69(7):3710-8. PubMed ID: 12839736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B; Brüggler K; Kratzer R; Mayr P
    J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering dimer contacts in xylose reductase from Candida tenuis by site-directed mutagenesis: structural and functional properties of R180A mutant.
    Klimacek M; Wührer F; Kavanagh KL; Wilson DK; Nidetzky B
    Chem Biol Interact; 2003 Feb; 143-144():523-32. PubMed ID: 12604238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases.
    Nidetzky B; Mayr P; Hadwiger P; Stütz AE
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5).
    Pival SL; Klimacek M; Kratzer R; Nidetzky B
    FEBS Lett; 2008 Dec; 582(29):4095-9. PubMed ID: 19026644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.
    Kratzer R; Wilson DK; Nidetzky B
    IUBMB Life; 2006 Sep; 58(9):499-507. PubMed ID: 17002977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolated Kluyveromyces lactis XP1461.
    Luo X; Wang YJ; Zheng YG
    Enzyme Microb Technol; 2015 Sep; 77():68-77. PubMed ID: 26138402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.