These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 24951554)
1. Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates. Somme J; Van Laer B; Roovers M; Steyaert J; Versées W; Droogmans L RNA; 2014 Aug; 20(8):1257-71. PubMed ID: 24951554 [TBL] [Abstract][Full Text] [Related]
2. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Liu RJ; Long T; Zhou M; Zhou XL; Wang ED Nucleic Acids Res; 2015 Sep; 43(15):7489-503. PubMed ID: 26202969 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10. Krishnamohan A; Jackman JE Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116 [TBL] [Abstract][Full Text] [Related]
4. Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Hori H Biomolecules; 2017 Feb; 7(1):. PubMed ID: 28264529 [TBL] [Abstract][Full Text] [Related]
5. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP. Renalier MH; Joseph N; Gaspin C; Thebault P; Mougin A RNA; 2005 Jul; 11(7):1051-63. PubMed ID: 15987815 [TBL] [Abstract][Full Text] [Related]
6. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. Ochi A; Makabe K; Yamagami R; Hirata A; Sakaguchi R; Hou YM; Watanabe K; Nureki O; Kuwajima K; Hori H J Biol Chem; 2013 Aug; 288(35):25562-25574. PubMed ID: 23867454 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Van Laer B; Roovers M; Wauters L; Kasprzak JM; Dyzma M; Deyaert E; Kumar Singh R; Feller A; Bujnicki JM; Droogmans L; Versées W Nucleic Acids Res; 2016 Jan; 44(2):940-53. PubMed ID: 26673726 [TBL] [Abstract][Full Text] [Related]
8. The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase. Purta E; van Vliet F; Tkaczuk KL; Dunin-Horkawicz S; Mori H; Droogmans L; Bujnicki JM BMC Mol Biol; 2006 Jul; 7():23. PubMed ID: 16848900 [TBL] [Abstract][Full Text] [Related]
9. New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA. Kempenaers M; Roovers M; Oudjama Y; Tkaczuk KL; Bujnicki JM; Droogmans L Nucleic Acids Res; 2010 Oct; 38(19):6533-43. PubMed ID: 20525789 [TBL] [Abstract][Full Text] [Related]
10. Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa. Jaroensuk J; Atichartpongkul S; Chionh YH; Wong YH; Liew CW; McBee ME; Thongdee N; Prestwich EG; DeMott MS; Mongkolsuk S; Dedon PC; Lescar J; Fuangthong M Nucleic Acids Res; 2016 Dec; 44(22):10834-10848. PubMed ID: 27683218 [TBL] [Abstract][Full Text] [Related]
11. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. Chatterjee K; Blaby IK; Thiaville PC; Majumder M; Grosjean H; Yuan YA; Gupta R; de Crécy-Lagard V RNA; 2012 Mar; 18(3):421-33. PubMed ID: 22274953 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation. Kohno Y; Ito A; Okamoto A; Yamagami R; Hirata A; Hori H J Biochem; 2023 Dec; 175(1):43-56. PubMed ID: 37844264 [TBL] [Abstract][Full Text] [Related]
14. Two different mechanisms for tRNA ribose methylation in Archaea: a short survey. Clouet-d'Orval B; Gaspin C; Mougin A Biochimie; 2005; 87(9-10):889-95. PubMed ID: 16164996 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD. Ito T; Masuda I; Yoshida K; Goto-Ito S; Sekine S; Suh SW; Hou YM; Yokoyama S Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4197-205. PubMed ID: 26183229 [TBL] [Abstract][Full Text] [Related]
16. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity. Walbott H; Leulliot N; Grosjean H; Golinelli-Pimpaneau B Nucleic Acids Res; 2008 Sep; 36(15):4929-40. PubMed ID: 18653523 [TBL] [Abstract][Full Text] [Related]
17. Trm5 and TrmD: Two Enzymes from Distinct Origins Catalyze the Identical tRNA Modification, m¹G37. Goto-Ito S; Ito T; Yokoyama S Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28335556 [TBL] [Abstract][Full Text] [Related]
18. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Hirata A; Okada K; Yoshii K; Shiraishi H; Saijo S; Yonezawa K; Shimizu N; Hori H Nucleic Acids Res; 2019 Nov; 47(20):10942-10955. PubMed ID: 31586407 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA. Kuratani M; Bessho Y; Nishimoto M; Grosjean H; Yokoyama S J Mol Biol; 2008 Jan; 375(4):1064-75. PubMed ID: 18068186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]