BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24951702)

  • 1. Design of multiple axis robotic platform for postural stability analysis.
    Kharboutly H; Ma J; Benali A; Thoumie P; Pasqui V; Bouzit M
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):93-103. PubMed ID: 24951702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time stability measurement system for postural control.
    Gopalai AA; Senanayake SM; Kiong LC; Gouwanda D
    J Bodyw Mov Ther; 2011 Oct; 15(4):453-64. PubMed ID: 21943619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediolateral damping of an overhead body weight support system assists stability during treadmill walking.
    Bannwart M; Bayer SL; König Ignasiak N; Bolliger M; Rauter G; Easthope CA
    J Neuroeng Rehabil; 2020 Aug; 17(1):108. PubMed ID: 32778127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance.
    Patanè F; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):157-66. PubMed ID: 20977987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural control in patients with unilateral vestibular lesions is more impaired in the roll than in the pitch plane: a static and dynamic posturography study.
    Mbongo F; Patko T; Vidal PP; Vibert N; Tran Ba Huy P; de Waele C
    Audiol Neurootol; 2005; 10(5):291-302. PubMed ID: 15925864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining level of postural control in young adults using force-sensing resistors.
    Gopalai AA; Senanayake SM; Gouwanda D
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):608-14. PubMed ID: 21478080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a three-degrees-of-freedom moveable platform for providing postural perturbations.
    Chen C; Lee JY; Horng RF; Lou SZ; Su FC
    Proc Inst Mech Eng H; 2009 Jan; 223(1):87-97. PubMed ID: 19239070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensation to whole body active rotation perturbation.
    Rossi S; Gazzellini S; Petrarca M; Patanè F; Salfa I; Castelli E; Cappa P
    Gait Posture; 2014; 39(1):621-4. PubMed ID: 23871422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions.
    Jung H; Chun KJ; Hong J; Lim D
    Clin Interv Aging; 2015; 10():1645-52. PubMed ID: 26508847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related hip proprioception declines: effects on postural sway and dynamic balance.
    Wingert JR; Welder C; Foo P
    Arch Phys Med Rehabil; 2014 Feb; 95(2):253-61. PubMed ID: 23994251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratio of shear to load ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation.
    Ting LH; Macpherson JM
    J Neurophysiol; 2004 Aug; 92(2):808-23. PubMed ID: 15084643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of seat heights and foot placement positions on postural control in children with cerebral palsy during a sit-to-stand task.
    Medeiros DL; Conceição JS; Graciosa MD; Koch DB; Santos MJ; Ries LG
    Res Dev Disabil; 2015; 43-44():1-10. PubMed ID: 26151438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodological requirement to analyze biomechanical postural control mechanisms with two platforms.
    Bonnet CT; Cherraf S; Do MC
    Hum Mov Sci; 2014 Jun; 35():94-103. PubMed ID: 24746532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of treatment with a kinaesthetic ability training device on balance and mobility after stroke: a randomized controlled study.
    Alptekin N; Gok H; Geler-Kulcu D; Dincer G
    Clin Rehabil; 2008; 22(10-11):922-30. PubMed ID: 18955424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prism adaptation improves postural imbalance in neglect patients.
    Nijboer TC; Olthoff L; Van der Stigchel S; Visser-Meily JM
    Neuroreport; 2014 Mar; 25(5):307-11. PubMed ID: 24488029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Assessment of a Rollator-User's Condition During Rehabilitation Using the i-Walker Platform.
    Ballesteros J; Urdiales C; Martinez AB; Tirado M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2009-2017. PubMed ID: 28459694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new translational platform for evaluating aging or pathology-related postural disorders.
    Ghulyan V; Paolino M; Lopez C; Dumitrescu M; Lacour M
    Acta Otolaryngol; 2005 Jun; 125(6):607-17. PubMed ID: 16076709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic posturography using a new movable multidirectional platform driven by gravity.
    Commissaris DA; Nieuwenhuijzen PH; Overeem S; de Vos A; Duysens JE; Bloem BR
    J Neurosci Methods; 2002 Jan; 113(1):73-84. PubMed ID: 11741724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits.
    Wall C; Kentala E
    J Vestib Res; 2005; 15(5-6):313-25. PubMed ID: 16614476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posturographic description of the regaining of postural stability following stroke.
    Rogind H; Christensen J; Danneskiold-Samsøe B; Bliddal H
    Clin Physiol Funct Imaging; 2005 Jan; 25(1):1-9. PubMed ID: 15659073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.