BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24951784)

  • 1. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Kuipers OP
    Appl Environ Microbiol; 2014 Sep; 80(17):5349-58. PubMed ID: 24951784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two gene clusters coordinate galactose and lactose metabolism in Streptococcus gordonii.
    Zeng L; Martino NC; Burne RA
    Appl Environ Microbiol; 2012 Aug; 78(16):5597-605. PubMed ID: 22660715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans.
    Rosey EL; Stewart GC
    J Bacteriol; 1992 Oct; 174(19):6159-70. PubMed ID: 1400164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster.
    Afzal M; Shafeeq S; Ahmed H; Kuipers OP
    Appl Environ Microbiol; 2015 May; 81(9):3121-31. PubMed ID: 25724955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis.
    Xiong ZQ; Kong LH; Meng HL; Cui JM; Xia YJ; Wang SJ; Ai LZ
    J Ind Microbiol Biotechnol; 2019 May; 46(5):751-758. PubMed ID: 30715626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes.
    Eaton TJ; Shearman CA; Gasson MJ
    J Gen Microbiol; 1993 Jul; 139(7):1495-501. PubMed ID: 8371112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity.
    van Rooijen RJ; Gasson MJ; de Vos WM
    J Bacteriol; 1992 Apr; 174(7):2273-80. PubMed ID: 1372602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1.
    Tsai YK; Lin TH
    J Appl Microbiol; 2006 Mar; 100(3):446-59. PubMed ID: 16478484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans.
    Zeng L; Burne RA
    Mol Microbiol; 2021 Jan; 115(1):70-83. PubMed ID: 32881130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
    Vaughan EE; van den Bogaard PT; Catzeddu P; Kuipers OP; de Vos WM
    J Bacteriol; 2001 Feb; 183(4):1184-94. PubMed ID: 11157930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis.
    van Rooijen RJ; de Vos WM
    J Biol Chem; 1990 Oct; 265(30):18499-503. PubMed ID: 2120234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression.
    van Rooijen RJ; Dechering KJ; Niek C; Wilmink J; de Vos WM
    Protein Eng; 1993 Feb; 6(2):201-6. PubMed ID: 8475045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.
    Alpert CA; Siebers U
    J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar.
    van den Bogaard PT; Kleerebezem M; Kuipers OP; de Vos WM
    J Bacteriol; 2000 Nov; 182(21):5982-9. PubMed ID: 11029416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
    Zeng L; Das S; Burne RA
    J Bacteriol; 2010 May; 192(9):2434-44. PubMed ID: 20190045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.