These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 24951791)
1. The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Sudarsan S; Dethlefsen S; Blank LM; Siemann-Herzberg M; Schmid A Appl Environ Microbiol; 2014 Sep; 80(17):5292-303. PubMed ID: 24951791 [TBL] [Abstract][Full Text] [Related]
2. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. Nikel PI; Chavarría M; Fuhrer T; Sauer U; de Lorenzo V J Biol Chem; 2015 Oct; 290(43):25920-32. PubMed ID: 26350459 [TBL] [Abstract][Full Text] [Related]
3. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. Wilkes RA; Waldbauer J; Aristilde L mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058 [TBL] [Abstract][Full Text] [Related]
4. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. Chavarría M; Kleijn RJ; Sauer U; Pflüger-Grau K; de Lorenzo V mBio; 2012; 3(2):. PubMed ID: 22434849 [TBL] [Abstract][Full Text] [Related]
5. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
6. Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in Kukurugya MA; Mendonca CM; Solhtalab M; Wilkes RA; Thannhauser TW; Aristilde L J Biol Chem; 2019 May; 294(21):8464-8479. PubMed ID: 30936206 [No Abstract] [Full Text] [Related]
7. Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. Pastor JM; Borges N; Pagán JP; Castaño-Cerezo S; Csonka LN; Goodner BW; Reynolds KA; Gonçalves LG; Argandoña M; Nieto JJ; Vargas C; Bernal V; Cánovas M Microb Cell Fact; 2019 Aug; 18(1):134. PubMed ID: 31409414 [TBL] [Abstract][Full Text] [Related]
8. GC-MS-based Kohlstedt M; Wittmann C Metab Eng; 2019 Jul; 54():35-53. PubMed ID: 30831266 [TBL] [Abstract][Full Text] [Related]
9. Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. Dolan SK; Kohlstedt M; Trigg S; Vallejo Ramirez P; Kaminski CF; Wittmann C; Welch M mBio; 2020 Mar; 11(2):. PubMed ID: 32184246 [No Abstract] [Full Text] [Related]
10. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Sánchez-Pascuala A; Fernández-Cabezón L; de Lorenzo V; Nikel PI Metab Eng; 2019 Jul; 54():200-211. PubMed ID: 31009747 [TBL] [Abstract][Full Text] [Related]
11. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. Wang Q; Nomura CT J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86. Choudhary A; Modak A; Apte SK; Phale PS Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285 [TBL] [Abstract][Full Text] [Related]
13. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Chavarría M; Nikel PI; Pérez-Pantoja D; de Lorenzo V Environ Microbiol; 2013 Jun; 15(6):1772-85. PubMed ID: 23301697 [TBL] [Abstract][Full Text] [Related]
14. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization. Wilkes RA; Mendonca CM; Aristilde L Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991 [TBL] [Abstract][Full Text] [Related]
15. Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma54 Pu promoter of Pseudomonas putida. Velázquez F; di Bartolo I; de Lorenzo V J Bacteriol; 2004 Dec; 186(24):8267-75. PubMed ID: 15576775 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes. Bolten CJ; Heinzle E; Müller R; Wittmann C J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405 [TBL] [Abstract][Full Text] [Related]
17. Refactoring the Embden-Meyerhof-Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria. Sánchez-Pascuala A; de Lorenzo V; Nikel PI ACS Synth Biol; 2017 May; 6(5):793-805. PubMed ID: 28121421 [TBL] [Abstract][Full Text] [Related]
18. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. Volke DC; Olavarría K; Nikel PI mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391 [TBL] [Abstract][Full Text] [Related]
19. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. La Rosa R; Nogales J; Rojo F Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694 [TBL] [Abstract][Full Text] [Related]
20. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]