BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24951890)

  • 1. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran.
    Yousefi M; Damghani AM; Khoramivafa M
    Sci Total Environ; 2014 Sep; 493():330-5. PubMed ID: 24951890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.
    Yousefi M; Mahdavi Damghani A; Khoramivafa M
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7390-7. PubMed ID: 26690584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.
    Mohammadzadeh A; Mahdavi Damghani A; Vafabakhsh J; Deihimfard R
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16971-16984. PubMed ID: 28577148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China.
    Wang Y; Ma Q; Li Y; Sun T; Jin H; Zhao C; Milne E; Easter M; Paustian K; Yong HWA; McDonagh J
    Environ Manage; 2019 Dec; 64(6):772-782. PubMed ID: 31748948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems.
    Yousefi M; Khoramivafa M; Damghani AM
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19827-19834. PubMed ID: 28685342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing rice yields while minimizing yield-scaled global warming potential.
    Pittelkow CM; Adviento-Borbe MA; van Kessel C; Hill JE; Linquist BA
    Glob Chang Biol; 2014 May; 20(5):1382-93. PubMed ID: 24115565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran-a case study of Alborz province.
    Pishgar-Komleh SH; Akram A; Keyhani A; van Zelm R
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16041-16049. PubMed ID: 28537021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of management strategies on the global warming potential at the cropping system level.
    Goglio P; Grant BB; Smith WN; Desjardins RL; Worth DE; Zentner R; Malhi SS
    Sci Total Environ; 2014 Aug; 490():921-33. PubMed ID: 24911772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy analyses and greenhouse gas emissions assessment for saffron production cycle.
    Bakhtiari AA; Hematian A; Sharifi A
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):16184-201. PubMed ID: 26070740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental evaluation and optimization of energy use and greenhouse gases mitigation for farm production systems in Mashhad, Iran.
    Taleghani A; Almassi M; Ghahderijani M
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35272-35283. PubMed ID: 32592049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model.
    Lu C; Tian H
    Glob Chang Biol; 2013 Feb; 19(2):571-88. PubMed ID: 23504794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of intensification of pastoral farming on greenhouse gas emissions in New Zealand.
    Pinares-Patino CS; Waghorn GC; Hegarty RS; Hoskin SO
    N Z Vet J; 2009 Oct; 57(5):252-61. PubMed ID: 19802038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea.
    Park JA; Gardner C; Chang MI; Kim DH; Jang YS
    PLoS One; 2015; 10(8):e0133778. PubMed ID: 26317341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: simulation of leaked CO2 from CCS.
    Zhang X; Ma X; Wu Y; Li Y
    Sci Total Environ; 2015 Jun; 518-519():78-85. PubMed ID: 25747367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.
    Koga N; Tajima R
    J Environ Manage; 2011 Mar; 92(3):967-73. PubMed ID: 21126818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China.
    Zhang X; Yin S; Li Y; Zhuang H; Li C; Liu C
    Sci Total Environ; 2014 Feb; 472():381-8. PubMed ID: 24295754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.