BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24951939)

  • 21. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii.
    Ranga Rao A; Sarada R; Ravishankar GA
    J Microbiol Biotechnol; 2007 Mar; 17(3):414-9. PubMed ID: 18050944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement of hydrocarbon recovery by spouting solvent into culture of Botryococcus braunii.
    Choi SP; Bahn SH; Sim SJ
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1977-85. PubMed ID: 23703677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale screening of natural genetic resource in the hydrocarbon-producing microalga Botrycoccus braunii identified novel fast-growing strains.
    Kawamura K; Nishikawa S; Hirano K; Ardianor A; Nugroho RA; Okada S
    Sci Rep; 2021 Apr; 11(1):7368. PubMed ID: 33811231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity.
    Ruangsomboon S; Dimak J; Jongput B; Wiwatanaratanabutr I; Kanyawongha P
    Sci Rep; 2020 Feb; 10(1):2731. PubMed ID: 32066792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system.
    Liu J; Ge Y; Cheng H; Wu L; Tian G
    Bioresour Technol; 2013 Jul; 139():190-4. PubMed ID: 23660382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor.
    Ge Y; Liu J; Tian G
    Bioresour Technol; 2011 Jan; 102(1):130-4. PubMed ID: 20584602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3.
    Hirano K; Hara T; Ardianor ; Nugroho RA; Segah H; Takayama N; Sulmin G; Komai Y; Okada S; Kawamura K
    Sci Rep; 2019 Nov; 9(1):16974. PubMed ID: 31740707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bioprocess engineering approach for the production of hydrocarbons and fatty acids from green microalga under high cobalt concentration as the feedstock of high-grade biofuels.
    Patel A; Rantzos C; Krikigianni E; Rova U; Christakopoulos P; Matsakas L
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):64. PubMed ID: 38730294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrocarbon production in high density Botryococcus braunii race B continuous culture.
    Khatri W; Hendrix R; Niehaus T; Chappell J; Curtis WR
    Biotechnol Bioeng; 2014 Mar; 111(3):493-503. PubMed ID: 24122424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22.
    Yonezawa N; Matsuura H; Shiho M; Kaya K; Watanabe MM
    Bioresour Technol; 2012 Apr; 109():304-7. PubMed ID: 21940163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards the commercialization of Botryococcus braunii for triterpenoid production.
    Al-Hothaly KA; Adetutu EM; May BH; Taha M; Ball AS
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1415-8. PubMed ID: 26264928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptomic analysis of a moderately growing subisolate Botryococcus braunii 779 (Chlorophyta) in response to nitrogen deprivation.
    Fang L; Sun D; Xu Z; He J; Qi S; Chen X; Chew W; Liu J
    Biotechnol Biofuels; 2015; 8():130. PubMed ID: 26322124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of nitrite as a nitrogen source by Botryococcus braunii.
    Yang S; Wang J; Cong W; Cai Z; Ouyang F
    Biotechnol Lett; 2004 Feb; 26(3):239-43. PubMed ID: 15049370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta).
    Song L; Qin JG; Su S; Xu J; Clarke S; Shan Y
    PLoS One; 2012; 7(7):e41459. PubMed ID: 22848502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt enrichment enhances the tolerance of Botryococcus braunii to high concentration of CO
    Cheng P; Muylaert K; Cheng JJ; Liu H; Chen P; Addy M; Zhou C; Yan X; Ruan R
    Bioresour Technol; 2020 Feb; 297():122385. PubMed ID: 31761625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii.
    Tanabe Y; Okazaki Y; Yoshida M; Matsuura H; Kai A; Shiratori T; Ishida K; Nakano S; Watanabe MM
    Sci Rep; 2015 Jul; 5():10467. PubMed ID: 26130609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the hydrocarbon-synthesizing activity during growth of Botryococcus braunii B70.
    Niitsu R; Kanazashi M; Matsuwaki I; Ikegami Y; Tanoi T; Kawachi M; Watanabe MM; Kato M
    Bioresour Technol; 2012 Apr; 109():297-9. PubMed ID: 21925877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate.
    Yin S; Wang J; Chen L; Liu T
    Biotechnol Lett; 2015 Sep; 37(9):1819-27. PubMed ID: 25994585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The production of hydrocarbons from photoautotrophic growth of Dunaliella salina 1650.
    Park DH; Ruy HW; Lee KY; Kang CH; Kim TH; Lee HY
    Appl Biochem Biotechnol; 1998; 70-72():739-46. PubMed ID: 18576038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii.
    Al-Hothaly KA; Adetutu EM; Taha M; Fabbri D; Lorenzetti C; Conti R; May BH; Shar SS; Bayoumi RA; Ball AS
    Bioresour Technol; 2015 Sep; 191():117-23. PubMed ID: 25983230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.