BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24951940)

  • 1. Optimization of glucose formation in karanja biomass hydrolysis using Taguchi robust method.
    Radhakumari M; Ball A; Bhargava SK; Satyavathi B
    Bioresour Technol; 2014 Aug; 166():534-40. PubMed ID: 24951940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A green recyclable SO(3)H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step.
    Prabhavathi Devi BL; Vijai Kumar Reddy T; Vijaya Lakshmi K; Prasad RB
    Bioresour Technol; 2014 Feb; 153():370-3. PubMed ID: 24373712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation.
    Ruan Z; Zanotti M; Zhong Y; Liao W; Ducey C; Liu Y
    Biotechnol Bioeng; 2013 Apr; 110(4):1039-49. PubMed ID: 23124976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis.
    Kim DH; Lee SB; Jeong GT
    Bioresour Technol; 2014 Jun; 161():348-53. PubMed ID: 24727694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel.
    Doshi P; Srivastava G; Pathak G; Dikshit M
    Waste Manag; 2014 Oct; 34(10):1836-46. PubMed ID: 24462338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.
    Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG
    J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogas production from Pongamia biomass wastes and a model to estimate biodegradability from their composition.
    Gunaseelan VN
    Waste Manag Res; 2014 Feb; 32(2):131-9. PubMed ID: 24519227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake.
    Chutia RS; Kataki R; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():336-42. PubMed ID: 24759769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization.
    Bhattacharyya S; Chakraborty S; Datta S; Drioli E; Bhattacharjee C
    Environ Technol; 2013; 34(9-12):1077-84. PubMed ID: 24191439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis.
    Fan SP; Jiang LQ; Chia CH; Fang Z; Zakaria S; Chee KL
    Bioresour Technol; 2014 Feb; 153():69-78. PubMed ID: 24342947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the involvement of nematocidal toxins of Purpureocillium lilacinum 6029 cultured on Karanja deoiled cake liquid medium.
    Sharma A; Sharma S; Mittal A; Naik SN
    World J Microbiol Biotechnol; 2016 May; 32(5):82. PubMed ID: 27038952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soaking pretreatment of corn stover for bioethanol production followed by anaerobic digestion process.
    Zuo Z; Tian S; Chen Z; Li J; Yang X
    Appl Biochem Biotechnol; 2012 Aug; 167(7):2088-102. PubMed ID: 22669688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.
    Nitsos CK; Matis KA; Triantafyllidis KS
    ChemSusChem; 2013 Jan; 6(1):110-22. PubMed ID: 23180649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of ozonolysis as a pretreatment for energy grasses.
    Panneerselvam A; Sharma-Shivappa RR; Kolar P; Ranney T; Peretti S
    Bioresour Technol; 2013 Nov; 148():242-8. PubMed ID: 24050926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of ozone pretreated energy grasses for optimal fermentable sugar production.
    Panneerselvam A; Sharma-Shivappa RR; Kolar P; Clare DA; Ranney T
    Bioresour Technol; 2013 Nov; 148():97-104. PubMed ID: 24045197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.
    Canettieri EV; de Moraes Rocha GJ; de Carvalho JA; de Almeida e Silva JB
    Bioresour Technol; 2007 Jan; 98(2):422-8. PubMed ID: 16473004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-assisted pretreatment of wheat straw for ethanol production.
    Schultz-Jensen N; Kádár Z; Thomsen AB; Bindslev H; Leipold F
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):1010-23. PubMed ID: 21728026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.