BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24951941)

  • 1. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp.
    Johnson EM; Kumar K; Das D
    Bioresour Technol; 2014 Aug; 166():541-7. PubMed ID: 24951941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats.
    Kannaujiya VK; Sinha RP
    Protoplasma; 2015 Nov; 252(6):1551-61. PubMed ID: 25772678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.
    Ma R; Lu F; Bi Y; Hu Z
    Biotechnol Lett; 2015 Aug; 37(8):1663-9. PubMed ID: 25864176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.
    Khajepour F; Hosseini SA; Ghorbani Nasrabadi R; Markou G
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2279-89. PubMed ID: 26100389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.
    Dai YJ; Li J; Wei SM; Chen N; Xiao YP; Tan ZL; Jia SR; Yuan NN; Tan N; Song YJ
    J Microbiol Biotechnol; 2013 Apr; 23(4):534-8. PubMed ID: 23568208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt.
    de O Moreira I; Passos TS; Chiapinni C; Silveira GK; Souza JC; Coca-Vellarde LG; Deliza R; de Lima Araújo KG
    J Sci Food Agric; 2012 Feb; 92(3):598-605. PubMed ID: 22095681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock.
    Lee NK; Oh HM; Kim HS; Ahn CY
    Bioresour Technol; 2017 Mar; 227():164-170. PubMed ID: 28024193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications.
    Pagels F; Guedes AC; Amaro HM; Kijjoa A; Vasconcelos V
    Biotechnol Adv; 2019; 37(3):422-443. PubMed ID: 30797095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic applications of phycobiliproteins.
    Aráoz R; Lebert M; Häder DP
    Electrophoresis; 1998 Feb; 19(2):215-9. PubMed ID: 9548282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter.
    Hirose Y; Narikawa R; Katayama M; Ikeuchi M
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8854-9. PubMed ID: 20404166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, purification, biochemical and mass spectrometric characterization of novel phycobiliproteins from a marine red alga, Centroceras clavulatum.
    Nair D; Krishna JG; Panikkar MVN; Nair BG; Pai JG; Nair SS
    Int J Biol Macromol; 2018 Jul; 114():679-691. PubMed ID: 29596933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the Freezing-Thawing Method for Extracting Phycobiliproteins from
    Tan HT; Khong NMH; Khaw YS; Ahmad SA; Yusoff FM
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32859046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical factors affecting the in vitro stability of phycobiliproteins from Phormidium rubidum A09DM.
    Rastogi RP; Sonani RR; Madamwar D
    Bioresour Technol; 2015 Aug; 190():219-26. PubMed ID: 25958145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of highly purified C-phycoerythrin from marine cyanobacterium Pseudanabaena sp.
    Mishra SK; Shrivastav A; Mishra S
    Protein Expr Purif; 2011 Dec; 80(2):234-8. PubMed ID: 21745573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403.
    Saini DK; Rai A; Devi A; Pabbi S; Chhabra D; Chang JS; Shukla P
    Bioresour Technol; 2021 Jun; 329():124908. PubMed ID: 33690058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor.
    Carbone DA; Olivieri G; Pollio A; Melkonian M
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3109-3119. PubMed ID: 32060692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum.
    Juin C; Chérouvrier JR; Thiéry V; Gagez AL; Bérard JB; Joguet N; Kaas R; Cadoret JP; Picot L
    Appl Biochem Biotechnol; 2015 Jan; 175(1):1-15. PubMed ID: 25231233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.
    Kannaujiya VK; Sinha RP
    Protoplasma; 2017 Jan; 254(1):423-433. PubMed ID: 27026262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore.
    Tang K; Ding WL; Höppner A; Zhao C; Zhang L; Hontani Y; Kennis JT; Gärtner W; Scheer H; Zhou M; Zhao KH
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15880-5. PubMed ID: 26669441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between color and pigment production in two stone biofilm-forming cyanobacteria (Nostoc sp. PCC 9104 and Nostoc sp. PCC 9025).
    Sanmartín P; Aira N; Devesa-Rey R; Silva B; Prieto B
    Biofouling; 2010 Jul; 26(5):499-509. PubMed ID: 20425659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.