These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24951963)
1. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963 [TBL] [Abstract][Full Text] [Related]
2. Sun X; Zhang J; Fan ZH; Xiao P; Liu SN; Li RP; Zhu WB; Huang L J Agric Food Chem; 2019 Aug; 67(32):8986-8993. PubMed ID: 31347835 [TBL] [Abstract][Full Text] [Related]
3. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966 [TBL] [Abstract][Full Text] [Related]
5. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast. Shima J; Hino A; Yamada-Iyo C; Suzuki Y; Nakajima R; Watanabe H; Mori K; Takano H Appl Environ Microbiol; 1999 Jul; 65(7):2841-6. PubMed ID: 10388673 [TBL] [Abstract][Full Text] [Related]
6. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428 [TBL] [Abstract][Full Text] [Related]
7. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Divate NR; Chen GH; Wang PM; Ou BR; Chung YC Bioengineered; 2016 Nov; 7(6):445-458. PubMed ID: 27484300 [TBL] [Abstract][Full Text] [Related]
8. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Jules M; Beltran G; François J; Parrou JL Appl Environ Microbiol; 2008 Feb; 74(3):605-14. PubMed ID: 18065618 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of high trehalose accumulation in a spore clone isolated from Shirakami kodama yeast. Nakazawa N; Obata Y; Ito K; Oto M; Ito T; Takahashi K J Gen Appl Microbiol; 2014; 60(4):147-55. PubMed ID: 25273988 [TBL] [Abstract][Full Text] [Related]
10. Deletion of NTH1 and HSP12 increases the freeze-thaw resistance of baker's yeast in bread dough. Chen BC; Lin HY Microb Cell Fact; 2022 Jul; 21(1):149. PubMed ID: 35879798 [TBL] [Abstract][Full Text] [Related]
11. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
12. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. Chen A; Gibney PA J Appl Microbiol; 2022 Oct; 133(4):2390-2402. PubMed ID: 35801661 [TBL] [Abstract][Full Text] [Related]
13. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae]. Lv Y; Xiao D; He D; Guo X Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808 [TBL] [Abstract][Full Text] [Related]
14. The relationship of freeze tolerance with intracellular compounds in baker's yeasts. Shi X; Miao Y; Chen JY; Chen J; Li W; He X; Wang J Appl Biochem Biotechnol; 2014 Mar; 172(6):3042-53. PubMed ID: 24482281 [TBL] [Abstract][Full Text] [Related]
15. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
16. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Mahmud SA; Hirasawa T; Shimizu H J Biosci Bioeng; 2010 Mar; 109(3):262-6. PubMed ID: 20159575 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H Biosci Biotechnol Biochem; 2012; 76(3):624-7. PubMed ID: 22451415 [TBL] [Abstract][Full Text] [Related]
18. In silico and in vivo analysis reveal a novel gene in Saccharomyces cerevisiae trehalose metabolism. De Mesquita JF; Panek AD; de Araujo PS BMC Genomics; 2003 Nov; 4(1):45. PubMed ID: 14614785 [TBL] [Abstract][Full Text] [Related]
19. Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae. Garre E; Pérez-Torrado R; Gimeno-Alcañiz JV; Matallana E FEMS Yeast Res; 2009 Feb; 9(1):52-62. PubMed ID: 19016884 [TBL] [Abstract][Full Text] [Related]
20. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough. Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]