BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24952172)

  • 1. β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae).
    Fruttero LL; Demartini DR; Rubiolo ER; Carlini CR; Canavoso LE
    Insect Biochem Mol Biol; 2014 Sep; 52():1-12. PubMed ID: 24952172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas' disease vector Panstrongylus megistus (Hemiptera: Reduviidae).
    Fruttero LL; Leyria J; Ramos FO; Stariolo R; Settembrini BP; Canavoso LE
    J Insect Physiol; 2017 Jan; 96():82-92. PubMed ID: 27983943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fat Body of the Hematophagous Insect, Panstrongylus megistus (Hemiptera: Reduviidae): Histological Features and Participation of the β-Chain of ATP Synthase in the Lipophorin-Mediated Lipid Transfer.
    Fruttero LL; Leyria J; Moyetta NR; Ramos FO; Settembrini BP; Canavoso LE
    J Insect Sci; 2019 Jul; 19(4):. PubMed ID: 31346627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and cellular characterization of lipophorin-midgut interaction in the hematophagous Panstrongylus megistus (Hemiptera: Reduviidae).
    Fruttero LL; Rubiolo ER; Canavoso LE
    Insect Biochem Mol Biol; 2009; 39(5-6):322-31. PubMed ID: 19507302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The storage of nutritional resources during vitellogenesis of Panstrongylus megistus (Hemiptera: Reduviidae): the pathways of lipophorin in lipid delivery to developing oocytes.
    Fruttero LL; Frede S; Rubiolo ER; Canavoso LE
    J Insect Physiol; 2011 Apr; 57(4):475-86. PubMed ID: 21277855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae).
    Canavoso LE; Frede S; Rubiolo ER
    Insect Biochem Mol Biol; 2004 Aug; 34(8):845-54. PubMed ID: 15262288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of lipid transfer particle in delivery of diacylglycerol from midgut to lipophorin in larval Manduca sexta.
    Canavoso LE; Wells MA
    Insect Biochem Mol Biol; 2001 Jun; 31(8):783-90. PubMed ID: 11378413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids.
    Canavoso LE; Stariolo R; Rubiolo ER
    Mem Inst Oswaldo Cruz; 2003 Oct; 98(7):909-14. PubMed ID: 14762517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cholesterol transport from midgut to fat body in Manduca sexta larvae.
    Yun HK; Jouni ZE; Wells MA
    Insect Biochem Mol Biol; 2002 Sep; 32(9):1151-8. PubMed ID: 12213250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of lipophorin binding to the midgut of larval Manduca sexta.
    Gondim KC; Wells MA
    Insect Biochem Mol Biol; 2000 May; 30(5):405-13. PubMed ID: 10745164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipophorin interaction with the midgut of Rhodnius prolixus: characterization and changes in binding capacity.
    Grillo LA; Pontes EG; Gondim KC
    Insect Biochem Mol Biol; 2003 Apr; 33(4):429-38. PubMed ID: 12650691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake.
    Rodríguez-Vázquez M; Vaquero D; Parra-Peralbo E; Mejía-Morales JE; Culi J
    PLoS Genet; 2015 Jun; 11(6):e1005356. PubMed ID: 26121667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect hemolymph lipophorin: a mechanism of lipid transport in insects.
    Chino H; Downer RG
    Adv Biophys; 1982; 15():67-92. PubMed ID: 7102456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins.
    Laino A; Cunningham ML; García F; Heras H
    J Insect Physiol; 2009 Dec; 55(12):1118-24. PubMed ID: 19686754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of termite lipophorin and its involvement in hydrocarbon transport.
    Fan Y; Schal C; Vargo EL; Bagnères AG
    J Insect Physiol; 2004 Jul; 50(7):609-20. PubMed ID: 15234621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid storage and mobilization in insects: current status and future directions.
    Arrese EL; Canavoso LE; Jouni ZE; Pennington JE; Tsuchida K; Wells MA
    Insect Biochem Mol Biol; 2001 Jan; 31(1):7-17. PubMed ID: 11102830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipophorin density variation during oogenesis on Rhodnius prolixus.
    Coelho HS; Atella GC; Moreira MF; Gondim KC; Masuda H
    Arch Insect Biochem Physiol; 1997; 35(3):301-13. PubMed ID: 9177134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fasting on the composition of the fat body lipid of Dipetalogaster maximus, Triatoma infestans and Panstrongylus megistus (Hemiptera: Reduviidae).
    Canavoso LE; Bertello LE; de Lederkremer RM; Rubiolo ER
    J Comp Physiol B; 1998 Oct; 168(7):549-54. PubMed ID: 9810719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-complement activity in salivary glands and midgut of Chagas disease vector, Panstrongylus megistus (Hemiptera, Triatominae).
    Mendes-Sousa AF; Rocha Filho EA; Macêdo MA; Barros VC
    Rev Inst Med Trop Sao Paulo; 2019 Aug; 61():e38. PubMed ID: 31411268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro lipid transfer between lipoproteins and midgut-diverticula in the spider Polybetes pythagoricus.
    Laino A; Cunningham ML; Heras H; Garcia F
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Dec; 160(4):181-6. PubMed ID: 21889600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.