These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24952172)

  • 41. Characterization of lipophorin binding to the fat body of Rhodnius prolixus.
    Pontes EG; Grillo LA; Gondim KC
    Insect Biochem Mol Biol; 2002 Nov; 32(11):1409-17. PubMed ID: 12530208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The basis for colorless hemolymph and cocoons in the Y-gene recessive Bombyx mori mutants: a defect in the cellular uptake of carotenoids.
    Tsuchida K; Katagiri C; Tanaka Y; Tabunoki H; Sato R; Maekawa H; Takada N; Banno Y; Fujii H; Wells MA; Jouni ZE
    J Insect Physiol; 2004 Oct; 50(10):975-83. PubMed ID: 15518665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An insect lipid transfer particle promotes lipid loading from fat body to lipoprotein.
    Van Heusden MC; Law JH
    J Biol Chem; 1989 Oct; 264(29):17287-92. PubMed ID: 2793856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recognition and inactivation of LPS by lipophorin particles.
    Ma G; Hay D; Li D; Asgari S; Schmidt O
    Dev Comp Immunol; 2006; 30(7):619-26. PubMed ID: 16386790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism.
    Almeida-Oliveira F; Santos-Araujo S; Carvalho-Kelly LF; Macedo-Silva A; Meyer-Fernandes JR; Gondim KC; Majerowicz D
    Insect Biochem Mol Biol; 2023 Jul; 158():103956. PubMed ID: 37196906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Different mechanisms for selective transport of fatty acids using a single class of lipoprotein in
    Matsuo N; Nagao K; Suito T; Juni N; Kato U; Hara Y; Umeda M
    J Lipid Res; 2019 Jul; 60(7):1199-1211. PubMed ID: 31085629
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport and utilization of free fatty acids in Triatoma infestans.
    Soulages JL; Rimoldi OJ; Peluffo OR; Brenner RR
    Biochem Biophys Res Commun; 1988 Dec; 157(2):465-71. PubMed ID: 3060117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Delipidation of insect lipoprotein, lipophorin, affects its binding to the lipophorin receptor, LpR: implications for the role of LpR-mediated endocytosis.
    Roosendaal SD; Van Doorn JM; Valentijn KM; Van der Horst DJ; Rodenburg KW
    Insect Biochem Mol Biol; 2009 Feb; 39(2):135-44. PubMed ID: 19049873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase.
    Grillo LA; Majerowicz D; Gondim KC
    Insect Biochem Mol Biol; 2007 Jun; 37(6):579-88. PubMed ID: 17517335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydration and localization of diacylglycerol in the insect lipoprotein lipophorin. A 13C-NMR study.
    Soulages JL; Rivera M; Walker FA; Wells MA
    Biochemistry; 1994 Mar; 33(11):3245-51. PubMed ID: 8136359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipophorin of lower density is formed during immune responses in the lepidopteran insect Galleria mellonella.
    Dettloff M; Wittwer D; Weise C; Wiesner A
    Cell Tissue Res; 2001 Dec; 306(3):449-58. PubMed ID: 11735046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. First report of colonization by Panstrongylus megistus (Burmeister, 1835) (Hemiptera, Reduviidae, Triatominae) in the Metropolitan Region of São Paulo, Brazil.
    Silva RA; Virgínio F; Estevão VAO; Martins ML; Duarte AN; Silva GP; Carvalho PR; Santos AR; Curado I; Sei IA
    Braz J Biol; 2021; 81(1):178-182. PubMed ID: 32074173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of diacylglycerol and apolipophorin-III in regulation of physiochemical properties of the lipophorin surface: metabolic implications.
    Soulages JL; van Antwerpen R; Wells MA
    Biochemistry; 1996 Apr; 35(16):5191-8. PubMed ID: 8611503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lipid thermotropic transitions in Triatoma infestans lipophorin.
    Soulages JL; Rimoldi OJ; Brenner RR
    J Lipid Res; 1988 Feb; 29(2):172-82. PubMed ID: 3284956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variability of the salivary proteins of 20 Brazilian populations of Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae).
    Barbosa SE; Diotaiuti L; Braga EM; Pereira MH
    Acta Trop; 2004 Sep; 92(1):25-33. PubMed ID: 15301972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytochemical characterization of Triatoma infestans and Panstrongylus megistus salivary gland cells (Hemiptera, Reduviidae, Triatominae).
    Anhê AC; Azeredo-Oliveira MT
    Micron; 2008 Dec; 39(8):1126-33. PubMed ID: 18722780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel adipokinetic hormones in the kissing bugs Rhodnius prolixus, Triatoma infestans, Dipetalogaster maxima and Panstrongylus megistus.
    Marco HG; Simek P; Clark KD; Gäde G
    Peptides; 2013 Mar; 41():21-30. PubMed ID: 23137850
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lipoproteins act as a reusable shuttle for lipid transport in the flying death's-head hawkmoth, Acherontia atropos.
    Surholt B; Goldberg J; Schulz TK; Beenakkers AM; Van der Horst DJ
    Biochim Biophys Acta; 1991 Oct; 1086(1):15-21. PubMed ID: 1954241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uptake of lipids by developing oocytes of the hawkmoth Manduca sexta. The possible role of lipoprotein lipase.
    van Antwerpen R; Salvador K; Tolman K; Gentry C
    Insect Biochem Mol Biol; 1998; 28(5-6):399-408. PubMed ID: 9692240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipophorin: The Lipid Shuttle.
    Gondim KC; Majerowicz D
    Adv Exp Med Biol; 2024 Jun; ():. PubMed ID: 38874888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.