BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 24952188)

  • 1. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications.
    Lennicke C; Rahn J; Heimer N; Lichtenfels R; Wessjohann LA; Seliger B
    Proteomics; 2016 Jan; 16(2):197-213. PubMed ID: 26508685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review.
    Majewska AM; Mostek A
    Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein redox modification as a cellular defense mechanism against tissue ischemic injury.
    Yan LJ
    Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks?
    Mukherjee S
    Plant Signal Behav; 2021 Jan; 16(1):1831792. PubMed ID: 33300450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between protein carbonylation and nitrosylation in plants.
    Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G
    Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Redox modifications of cysteine residues in plant proteins].
    Szworst-Łupina D; Rusinowski Z; Zagdańska B
    Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct way of redox sensing.
    Benoit R; Auer M
    RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J; Gaffrey MJ; Qian WJ
    Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins.
    Houée-Levin C; Bobrowski K
    J Proteomics; 2013 Oct; 92():51-62. PubMed ID: 23454334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.