These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
715 related articles for article (PubMed ID: 24952188)
1. Redox proteomics: from bench to bedside. Ckless K Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188 [TBL] [Abstract][Full Text] [Related]
2. Mass spectrometry and redox proteomics: applications in disease. Butterfield DA; Gu L; Di Domenico F; Robinson RA Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952 [TBL] [Abstract][Full Text] [Related]
3. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications. Lennicke C; Rahn J; Heimer N; Lichtenfels R; Wessjohann LA; Seliger B Proteomics; 2016 Jan; 16(2):197-213. PubMed ID: 26508685 [TBL] [Abstract][Full Text] [Related]
4. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review. Majewska AM; Mostek A Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010 [TBL] [Abstract][Full Text] [Related]
6. Cysteine-mediated redox signalling in the mitochondria. Bak DW; Weerapana E Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845 [TBL] [Abstract][Full Text] [Related]
7. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Rinalducci S; Murgiano L; Zolla L J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746 [TBL] [Abstract][Full Text] [Related]
12. ROSics: chemistry and proteomics of cysteine modifications in redox biology. Kim HJ; Ha S; Lee HY; Lee KJ Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017 [TBL] [Abstract][Full Text] [Related]
13. Protein redox modification as a cellular defense mechanism against tissue ischemic injury. Yan LJ Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. Wani R; Murray BW Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239 [TBL] [Abstract][Full Text] [Related]
15. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? Mukherjee S Plant Signal Behav; 2021 Jan; 16(1):1831792. PubMed ID: 33300450 [TBL] [Abstract][Full Text] [Related]
16. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia. Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641 [TBL] [Abstract][Full Text] [Related]
17. Interplay between protein carbonylation and nitrosylation in plants. Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931 [TBL] [Abstract][Full Text] [Related]
18. [Redox modifications of cysteine residues in plant proteins]. Szworst-Łupina D; Rusinowski Z; Zagdańska B Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012 [TBL] [Abstract][Full Text] [Related]
19. A direct way of redox sensing. Benoit R; Auer M RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941 [TBL] [Abstract][Full Text] [Related]