BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 24952560)

  • 1. Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: a comparison between density functional theory and density functional tight binding results.
    grosse Holthaus S; Köppen S; Frauenheim T; Ciacchi LC
    J Chem Phys; 2014 Jun; 140(23):234707. PubMed ID: 24952560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acids and proteins at ZnO-water interfaces in molecular dynamics simulations.
    Nawrocki G; Cieplak M
    Phys Chem Chem Phys; 2013 Aug; 15(32):13628-36. PubMed ID: 23836065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling molecule-surface interactions--an automated quantum-classical approach using a genetic algorithm.
    Herbers CR; Johnston K; van der Vegt NF
    Phys Chem Chem Phys; 2011 Jun; 13(22):10577-83. PubMed ID: 21594260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Modified Arg, Lys, Asp, and Gln to Dry and Hydrated ZnO Surface: A Density Functional Theory Study.
    Buonocore F; Arcangeli C; Gala F; Zollo G; Celino M
    J Phys Chem B; 2015 Sep; 119(35):11791-7. PubMed ID: 26262824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations.
    Nawrocki G; Cieplak M
    J Chem Phys; 2014 Mar; 140(9):095101. PubMed ID: 24606380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water Multilayers on TiO
    Selli D; Fazio G; Seifert G; Di Valentin C
    J Chem Theory Comput; 2017 Aug; 13(8):3862-3873. PubMed ID: 28679048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiospecific adsorption of amino acids on hydroxylated quartz (0001).
    Han JW; Sholl DS
    Langmuir; 2009 Sep; 25(18):10737-45. PubMed ID: 19496574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.
    Hughes ZE; Wright LB; Walsh TR
    Langmuir; 2013 Oct; 29(43):13217-29. PubMed ID: 24079907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsolvation and hydrogen bond interactions in Glycine Dipeptide: molecular dynamics and density functional theory studies.
    Yogeswari B; Kanakaraju R; Boopathi S; Kolandaivel P
    J Mol Graph Model; 2012 May; 35():11-20. PubMed ID: 22481074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density functional tight binding model with an extended basis set and three-body repulsion for hydrogen under extreme thermodynamic conditions.
    Srinivasan SG; Goldman N; Tamblyn I; Hamel S; Gaus M
    J Phys Chem A; 2014 Jul; 118(29):5520-8. PubMed ID: 24960065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Mediated Hydrogen Bonding of Proteinogenic α-Amino Acids on Silicon.
    Rahsepar FR; Moghimi N; Leung KT
    Acc Chem Res; 2016 May; 49(5):942-51. PubMed ID: 27014956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic hydrogen-bond networks and ion solvation. 1. An efficient Monte Carlo/quantum mechanical method for structural search and energy computations: ammonium/water.
    Zhao YL; Meot-Ner Mautner M; Gonzalez C
    J Phys Chem A; 2009 Mar; 113(12):2967-74. PubMed ID: 19243164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution.
    Pašalić H; Tunega D; Aquino AJ; Haberhauer G; Gerzabek MH; Lischka H
    Phys Chem Chem Phys; 2012 Mar; 14(12):4162-70. PubMed ID: 22353846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation.
    Kamel M; Raissi H; Hashemzadeh H; Mohammadifard K
    Amino Acids; 2020 Oct; 52(10):1465-1478. PubMed ID: 33098474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2.
    Li W; Kotsis K; Manzhos S
    Phys Chem Chem Phys; 2016 Jul; 18(29):19902-17. PubMed ID: 27400036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the stabilization mechanisms of organic functional groups on ZnO surfaces.
    Moreira NH; Domıinguez A; Frauenheim T; da Rosa AL
    Phys Chem Chem Phys; 2012 Nov; 14(44):15445-51. PubMed ID: 23073244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water driven adsorption of amino acids on the (101) anatase TiO₂ surface: an ab initio study.
    Agosta L; Zollo G; Arcangeli C; Buonocore F; Gala F; Celino M
    Phys Chem Chem Phys; 2015 Jan; 17(3):1556-61. PubMed ID: 25434879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.