These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 24952976)
1. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Harada N; Watanabe Y; Sato K; Abe S; Yamanaka K; Sakai Y; Kaneko T; Matsushita T Biomaterials; 2014 Sep; 35(27):7800-10. PubMed ID: 24952976 [TBL] [Abstract][Full Text] [Related]
2. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490 [TBL] [Abstract][Full Text] [Related]
3. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo. Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424 [TBL] [Abstract][Full Text] [Related]
4. Stem cell therapy: is there a future for reconstruction of large bone defects? Watanabe Y; Harada N; Sato K; Abe S; Yamanaka K; Matushita T Injury; 2016 Jan; 47 Suppl 1():S47-51. PubMed ID: 26768292 [TBL] [Abstract][Full Text] [Related]
5. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects. van der Stok J; Koolen MK; Jahr H; Kops N; Waarsing JH; Weinans H; van der Jagt OP Eur Cell Mater; 2014 Feb; 27():137-48; discussion 148. PubMed ID: 24554271 [TBL] [Abstract][Full Text] [Related]
7. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
8. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543 [TBL] [Abstract][Full Text] [Related]
9. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. Jia P; Chen H; Kang H; Qi J; Zhao P; Jiang M; Guo L; Zhou Q; Qian ND; Zhou HB; Xu YJ; Fan Y; Deng LF J Biomed Mater Res A; 2016 Oct; 104(10):2515-27. PubMed ID: 27227768 [TBL] [Abstract][Full Text] [Related]
10. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Liu K; Zhou GD; Liu W; Zhang WJ; Cui L; Liu X; Liu TY; Cao Y Biomaterials; 2008 May; 29(14):2183-92. PubMed ID: 18289667 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. Sonomoto K; Yamaoka K; Kaneko H; Yamagata K; Sakata K; Zhang X; Kondo M; Zenke Y; Sabanai K; Nakayamada S; Sakai A; Tanaka Y PLoS One; 2016; 11(4):e0153231. PubMed ID: 27055270 [TBL] [Abstract][Full Text] [Related]
12. Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells. Endres S; Hiebl B; Hägele J; Beltzer C; Fuhrmann R; Jäger V; Almeida M; Costa E; Santos C; Traupe H; Jung EM; Prantl L; Jung F; Wilke A; Franke RP Clin Hemorheol Microcirc; 2011; 48(1):29-40. PubMed ID: 21876232 [TBL] [Abstract][Full Text] [Related]
13. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo. Cai X; Yang F; Yan X; Yang W; Yu N; Oortgiesen DA; Wang Y; Jansen JA; Walboomers XF J Clin Periodontol; 2015 Apr; 42(4):380-9. PubMed ID: 25692209 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Zhu S; Zhang B; Man C; Ma Y; Liu X; Hu J Cell Transplant; 2014 Apr; 23(6):715-27. PubMed ID: 24763260 [TBL] [Abstract][Full Text] [Related]
15. Performance of different three-dimensional scaffolds for in vivo endochondral bone generation. Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F Eur Cell Mater; 2014 Jun; 27():350-64. PubMed ID: 24913441 [TBL] [Abstract][Full Text] [Related]
16. PLGA-PTMC-Cultured Bone Mesenchymal Stem Cell Scaffold Enhances Cartilage Regeneration in Tissue-Engineered Tracheal Transplantation. Yan B; Zhang Z; Wang X; Ni Y; Liu Y; Liu T; Wang W; Xing H; Sun Y; Wang J; Li XF Artif Organs; 2017 May; 41(5):461-469. PubMed ID: 27925229 [TBL] [Abstract][Full Text] [Related]
17. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Lin CY; Chang YH; Li KC; Lu CH; Sung LY; Yeh CL; Lin KJ; Huang SF; Yen TC; Hu YC Biomaterials; 2013 Dec; 34(37):9401-12. PubMed ID: 24016854 [TBL] [Abstract][Full Text] [Related]
18. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study. Semyari H; Rajipour M; Sabetkish S; Sabetkish N; Abbas FM; Kajbafzadeh AM Cell Tissue Bank; 2016 Mar; 17(1):69-83. PubMed ID: 26108195 [TBL] [Abstract][Full Text] [Related]
20. Clumps of a mesenchymal stromal cell/extracellular matrix complex can be a novel tissue engineering therapy for bone regeneration. Kittaka M; Kajiya M; Shiba H; Takewaki M; Takeshita K; Khung R; Fujita T; Iwata T; Nguyen TQ; Ouhara K; Takeda K; Fujita T; Kurihara H Cytotherapy; 2015 Jul; 17(7):860-73. PubMed ID: 25743634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]