BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24953302)

  • 1. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.
    Bommareddy RR; Chen Z; Rappert S; Zeng AP
    Metab Eng; 2014 Sep; 25():30-7. PubMed ID: 24953302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production.
    Takeno S; Murata R; Kobayashi R; Mitsuhashi S; Ikeda M
    Appl Environ Microbiol; 2010 Nov; 76(21):7154-60. PubMed ID: 20851994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene.
    Takeno S; Hori K; Ohtani S; Mimura A; Mitsuhashi S; Ikeda M
    Metab Eng; 2016 Sep; 37():1-10. PubMed ID: 27044449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.
    Martínez I; Zhu J; Lin H; Bennett GN; San KY
    Metab Eng; 2008 Nov; 10(6):352-9. PubMed ID: 18852061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
    Wu W; Zhang Y; Liu D; Chen Z
    Metab Eng; 2019 Mar; 52():77-86. PubMed ID: 30458240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum.
    Marx A; Hans S; Möckel B; Bathe B; de Graaf AA; McCormack AC; Stapleton C; Burke K; O'Donohue M; Dunican LK
    J Biotechnol; 2003 Sep; 104(1-3):185-97. PubMed ID: 12948638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes.
    Hoffmann SL; Jungmann L; Schiefelbein S; Peyriga L; Cahoreau E; Portais JC; Becker J; Wittmann C
    Metab Eng; 2018 May; 47():475-487. PubMed ID: 29709649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum.
    Wang Z; Chan SHJ; Sudarsan S; Blank LM; Jensen PR; Solem C
    Metab Eng; 2016 Nov; 38():344-357. PubMed ID: 27553884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering.
    Hoffmann SL; Kohlstedt M; Jungmann L; Hutter M; Poblete-Castro I; Becker J; Wittmann C
    Metab Eng; 2021 Sep; 67():293-307. PubMed ID: 34314893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.
    Yokota A; Sawada K; Wada M
    Adv Biochem Eng Biotechnol; 2017; 159():181-198. PubMed ID: 27872961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin.
    Sparla F; Fermani S; Falini G; Zaffagnini M; Ripamonti A; Sabatino P; Pupillo P; Trost P
    J Mol Biol; 2004 Jul; 340(5):1025-37. PubMed ID: 15236965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Guided Protein Engineering of Glyceraldehyde-3-phosphate Dehydrogenase from
    Son HF; Yu H; Hong J; Lee D; Kim IK; Kim KJ
    J Agric Food Chem; 2023 Nov; 71(46):17852-17859. PubMed ID: 37935620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.
    Chen Z; Bommareddy RR; Frank D; Rappert S; Zeng AP
    Appl Environ Microbiol; 2014 Feb; 80(4):1388-93. PubMed ID: 24334667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based functional analysis of a novel NADPH-producing glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum.
    Son HF; Park W; Kim S; Kim IK; Kim KJ
    Int J Biol Macromol; 2024 Jan; 255():128103. PubMed ID: 37992937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.
    Komati Reddy G; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway--metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum.
    Kind S; Becker J; Wittmann C
    Metab Eng; 2013 Jan; 15():184-95. PubMed ID: 22871505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and transcriptional response of Escherichia coli with a NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans.
    Centeno-Leija S; Utrilla J; Flores N; Rodriguez A; Gosset G; Martinez A
    Antonie Van Leeuwenhoek; 2013 Dec; 104(6):913-24. PubMed ID: 23989925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.