These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24953630)

  • 1. Plasmon resonance analysis with configuration interaction.
    Guidez EB; Aikens CM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15501-9. PubMed ID: 24953630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction.
    Alkan F; Aikens CM
    Phys Chem Chem Phys; 2019 Oct; 21(41):23065-23075. PubMed ID: 31602447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate state representation approach to physical properties of electronically excited molecules.
    Schirmer J; Trofimov AB
    J Chem Phys; 2004 Jun; 120(24):11449-64. PubMed ID: 15268179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic transition dipole moments and dipole oscillator strengths within Fock-space multi-reference coupled cluster framework: an efficient and novel approach.
    Bhattacharya D; Vaval N; Pal S
    J Chem Phys; 2013 Mar; 138(9):094108. PubMed ID: 23485278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations of the exciton coupling elements between the DNA bases using the transition density cube method.
    Czader A; Bittner ER
    J Chem Phys; 2008 Jan; 128(3):035101. PubMed ID: 18205523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system.
    Baieva S; Ihalainen JA; Toppari JJ
    J Chem Phys; 2013 Jan; 138(4):044707. PubMed ID: 23387615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the role of oscillator strength and charge of exciton forming molecular J-aggregates in controlling nanoscale plasmon-exciton interactions.
    Das K; Dey J; Verma MS; Kumar M; Chandra M
    Phys Chem Chem Phys; 2020 Sep; 22(36):20499-20506. PubMed ID: 32966416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Tunable Visible Absorption Predicted for Polysilo-acenes Using TDDFT Calculations.
    Weerawardene KL; Aikens CM
    J Phys Chem Lett; 2015 Sep; 6(17):3341-5. PubMed ID: 26266968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of excited-state plasmon modes in linear hydrogen chains from time-dependent quantum mechanical methods.
    DePrince AE; Pelton M; Guest JR; Gray SK
    Phys Rev Lett; 2011 Nov; 107(19):196806. PubMed ID: 22181635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling.
    Fathololoumi S; Dupont E; Chan CW; Wasilewski ZR; Laframboise SR; Ban D; Mátyás A; Jirauschek C; Hu Q; Liu HC
    Opt Express; 2012 Feb; 20(4):3866-76. PubMed ID: 22418143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of the relaxation and resonant elements in the autonomous chaotic relaxation oscillator (ACRO).
    Bernhardt PA
    Chaos; 1992 Apr; 2(2):183-199. PubMed ID: 12779965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopy of nitrophenolates in vacuo: effect of spacer, configuration, and microsolvation on the charge-transfer excitation energy.
    Brøndsted Nielsen S; Brøndsted Nielsen M; Rubio A
    Acc Chem Res; 2014 Apr; 47(4):1417-25. PubMed ID: 24673172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electronic couplings in electron transfer and excitation energy transfer.
    Hsu CP
    Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation.
    Yang CH; Hsu CP
    J Chem Phys; 2013 Oct; 139(15):154104. PubMed ID: 24160497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.
    He Y
    Nanotechnology; 2017 Jun; 28(25):255203. PubMed ID: 28453443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.