These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
803 related articles for article (PubMed ID: 24953725)
1. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions. Griepentrog M; Eglinton TI; Hagedorn F; Schmidt MW; Wiesenberg GL Glob Chang Biol; 2015 Jan; 21(1):473-86. PubMed ID: 24953725 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Griepentrog M; Bodé S; Boeckx P; Hagedorn F; Heim A; Schmidt MW Glob Chang Biol; 2014 Jan; 20(1):327-40. PubMed ID: 23996910 [TBL] [Abstract][Full Text] [Related]
3. Stable-isotope labeling and probing of recent photosynthates into respired CO2, soil microbes and soil mesofauna using a xylem and phloem stem-injection technique on Sitka spruce (Picea sitchensis). Churchland C; Weatherall A; Briones MJ; Grayston SJ Rapid Commun Mass Spectrom; 2012 Nov; 26(21):2493-501. PubMed ID: 23008066 [TBL] [Abstract][Full Text] [Related]
4. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
5. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. Weigt RB; Häberle KH; Millard P; Metzger U; Ritter W; Blaschke H; Göttlein A; Matyssek R Tree Physiol; 2012 Oct; 32(10):1259-73. PubMed ID: 23042769 [TBL] [Abstract][Full Text] [Related]
7. Regenerating temperate forest mesocosms in elevated CO Berntson GM; Bazzaz FA Oecologia; 1997 Dec; 113(1):115-125. PubMed ID: 28307286 [TBL] [Abstract][Full Text] [Related]
8. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580 [TBL] [Abstract][Full Text] [Related]
9. Assessing the use of delta(13)C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Formánek P; Ambus P Rapid Commun Mass Spectrom; 2004; 18(8):897-902. PubMed ID: 15095359 [TBL] [Abstract][Full Text] [Related]
10. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery. Zang U; Goisser M; Grams TE; Häberle KH; Matyssek R; Matzner E; Borken W Tree Physiol; 2014 Jan; 34(1):29-38. PubMed ID: 24420388 [TBL] [Abstract][Full Text] [Related]
11. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research. Ryan MG Tree Physiol; 2013 Nov; 33(11):1123-31. PubMed ID: 24300337 [TBL] [Abstract][Full Text] [Related]
12. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Drake JE; Macdonald CA; Tjoelker MG; Crous KY; Gimeno TE; Singh BK; Reich PB; Anderson IC; Ellsworth DS Glob Chang Biol; 2016 Jan; 22(1):380-90. PubMed ID: 26426394 [TBL] [Abstract][Full Text] [Related]
13. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
14. Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Grams TE; Matyssek R Environ Pollut; 2010 Apr; 158(4):1036-42. PubMed ID: 19796853 [TBL] [Abstract][Full Text] [Related]
15. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Gruba P; Socha J; Błońska E; Lasota J Sci Total Environ; 2015 Jul; 521-522():90-100. PubMed ID: 25829288 [TBL] [Abstract][Full Text] [Related]
16. Labile carbon retention compensates for CO2 released by priming in forest soils. Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210 [TBL] [Abstract][Full Text] [Related]
17. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Phillips RP; Meier IC; Bernhardt ES; Grandy AS; Wickings K; Finzi AC Ecol Lett; 2012 Sep; 15(9):1042-9. PubMed ID: 22776588 [TBL] [Abstract][Full Text] [Related]
18. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Soong JL; Cotrufo MF Glob Chang Biol; 2015 Jun; 21(6):2321-33. PubMed ID: 25487951 [TBL] [Abstract][Full Text] [Related]
19. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Körner C; Asshoff R; Bignucolo O; Hättenschwiler S; Keel SG; Peláez-Riedl S; Pepin S; Siegwolf RT; Zotz G Science; 2005 Aug; 309(5739):1360-2. PubMed ID: 16123297 [TBL] [Abstract][Full Text] [Related]
20. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]