These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 24953725)

  • 21. Effects of Elevated Carbon Dioxide and Nitrogen Fertilization on Mycorrhizal Fine Roots and the Soil Microbial Community in Beech-Spruce Ecosystems on Siliceous and Calcareous Soil.
    Wiemken V; Laczko E; Ineichen K; Boller T
    Microb Ecol; 2001 Aug; 42(2):126-135. PubMed ID: 12024276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment.
    Singh N; Abiven S; Maestrini B; Bird JA; Torn MS; Schmidt MW
    Glob Chang Biol; 2014 May; 20(5):1629-42. PubMed ID: 25544969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.
    Zak DR; Holmes WE; Pregitzer KS
    Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure.
    Cater M; Ogrinc N
    Isotopes Environ Health Stud; 2011 Jun; 47(2):221-37. PubMed ID: 21644135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organic matter flow in the food web at a temperate heath under multifactorial climate change.
    Andresen LC; Konestabo HS; Maraldo K; Holmstrup M; Ambus P; Beier C; Michelsen A
    Rapid Commun Mass Spectrom; 2011 Jun; 25(11):1485-96. PubMed ID: 21594921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.
    Drigo B; Kowalchuk GA; Knapp BA; Pijl AS; Boschker HT; van Veen JA
    Glob Chang Biol; 2013 Feb; 19(2):621-36. PubMed ID: 23504797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Belowground carbon trade among tall trees in a temperate forest.
    Klein T; Siegwolf RT; Körner C
    Science; 2016 Apr; 352(6283):342-4. PubMed ID: 27081070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparisons of delta13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability.
    Scartazza A; Mata C; Matteucci G; Yakir D; Moscatello S; Brugnoli E
    Oecologia; 2004 Jul; 140(2):340-51. PubMed ID: 15150655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical Savanna.
    Boutton TW; Archer SR; Midwood AJ
    Rapid Commun Mass Spectrom; 1999; 13(13):1263-77. PubMed ID: 10407309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mineral nutrition and elevated [CO(2)] interact to modify δ(13)C, an index of gas exchange, in Norway spruce.
    Marshall JD; Linder S
    Tree Physiol; 2013 Nov; 33(11):1132-44. PubMed ID: 23425689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consequences of elevated CO2, augmented nitrogen-deposition and soil type on the soluble nitrogen and sulphur in the phloem of beech (Fagus sylvatica) and spruce (Picea abies) in a competitive situation.
    Schraml C; Herschbach C; Eiblmeier M; Rennenberg H
    Physiol Plant; 2002 Jun; 115(2):258-266. PubMed ID: 12060244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest.
    Hartl-Meier C; Zang C; Büntgen U; Esper J; Rothe A; Göttlein A; Dirnböck T; Treydte K
    Tree Physiol; 2015 Jan; 35(1):4-15. PubMed ID: 25466725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs.
    Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A
    Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elevated atmospheric CO
    Jensen KH; Grandy AS; Sparks JP
    Glob Chang Biol; 2024 Feb; 30(2):e17175. PubMed ID: 38337156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of elevated CO
    Egli P; Maurer S; Günthardt-Goerg MS; Körner C
    New Phytol; 1998 Oct; 140(2):185-196. PubMed ID: 33862836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst).
    Nikolova PS; Andersen CP; Blaschke H; Matyssek R; Häberle KH
    Environ Pollut; 2010 Apr; 158(4):1071-8. PubMed ID: 19682778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal dynamics in the stable carbon isotope composition δ¹³C from non-leafy branch, trunk and coarse root CO₂ efflux of adult deciduous (Fagus sylvatica) and evergreen (Picea abies) trees.
    Kuptz D; Matyssek R; Grams TE
    Plant Cell Environ; 2011 Mar; 34(3):363-73. PubMed ID: 21054435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2.
    Hu S; Chapin FS; Firestone MK; Field CB; Chiariello NR
    Nature; 2001 Jan; 409(6817):188-91. PubMed ID: 11196641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.