BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24953827)

  • 1. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips.
    Ma L; Datta SS; Karymov MA; Pan Q; Begolo S; Ismagilov RF
    Integr Biol (Camb); 2014 Aug; 6(8):796-805. PubMed ID: 24953827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa.
    Ma L; Kim J; Hatzenpichler R; Karymov MA; Hubert N; Hanan IM; Chang EB; Ismagilov RF
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9768-73. PubMed ID: 24965364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities.
    Leung K; Zahn H; Leaver T; Konwar KM; Hanson NW; Pagé AP; Lo CC; Chain PS; Hallam SJ; Hansen CL
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7665-70. PubMed ID: 22547789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet based microfluidics.
    Seemann R; Brinkmann M; Pfohl T; Herminghaus S
    Rep Prog Phys; 2012 Jan; 75(1):016601. PubMed ID: 22790308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SlipChip.
    Du W; Li L; Nichols KP; Ismagilov RF
    Lab Chip; 2009 Aug; 9(16):2286-92. PubMed ID: 19636458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dead-end filling of SlipChip evaluated theoretically and experimentally as a function of the surface chemistry and the gap size between the plates for lubricated and dry SlipChips.
    Li L; Karymov MA; Nichols KP; Ismagilov RF
    Langmuir; 2010 Jul; 26(14):12465-71. PubMed ID: 20575548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streamlined digital bioassays with a 3D printed sample changer.
    Menezes R; Dramé-Maigné A; Taly V; Rondelez Y; Gines G
    Analyst; 2020 Jan; 145(2):572-581. PubMed ID: 31769452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array.
    Ding L; Radfar P; Rezaei M; Warkiani ME
    Mikrochim Acta; 2021 Jul; 188(8):242. PubMed ID: 34226955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments.
    Li L; Du W; Ismagilov R
    J Am Chem Soc; 2010 Jan; 132(1):106-11. PubMed ID: 20000708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finger-Powered Electro-Digital-Microfluidics.
    Peng C; Ju YS
    Methods Mol Biol; 2017; 1572():293-311. PubMed ID: 28299696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP.
    Yu Z; Lyu W; Yu M; Wang Q; Qu H; Ismagilov RF; Han X; Lai D; Shen F
    Biosens Bioelectron; 2020 May; 155():112107. PubMed ID: 32090872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential impact of droplet microfluidics in biology.
    Schneider T; Kreutz J; Chiu DT
    Anal Chem; 2013 Apr; 85(7):3476-82. PubMed ID: 23495853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification.
    Schulz M; Probst S; Calabrese S; R Homann A; Borst N; Weiss M; von Stetten F; Zengerle R; Paust N
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.