BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 24953844)

  • 1. Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes.
    Arrocha AA; Cano-Castillo U; Aguila SA; Vazquez-Duhalt R
    Biosens Bioelectron; 2014 Nov; 61():569-74. PubMed ID: 24953844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode.
    Das M; Barbora L; Das P; Goswami P
    Biosens Bioelectron; 2014 Sep; 59():184-91. PubMed ID: 24727604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular design of laccase cathode for direct electron transfer in a biofuel cell.
    Martinez-Ortiz J; Flores R; Vazquez-Duhalt R
    Biosens Bioelectron; 2011 Jan; 26(5):2626-31. PubMed ID: 21145724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite-enzyme electrode.
    Uk Lee H; Young Yoo H; Lkhagvasuren T; Seok Song Y; Park C; Kim J; Wook Kim S
    Biosens Bioelectron; 2013 Apr; 42():342-8. PubMed ID: 23228492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells.
    Prasad KP; Chen Y; Chen P
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3387-93. PubMed ID: 24533856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Bioelectrochemistry; 2012 Oct; 87():172-7. PubMed ID: 22200380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic biofuel cell based on anode and cathode powered by ethanol.
    Ramanavicius A; Kausaite A; Ramanaviciene A
    Biosens Bioelectron; 2008 Dec; 24(4):767-72. PubMed ID: 18693008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes.
    Boland S; Leech D
    Analyst; 2012 Jan; 137(1):113-7. PubMed ID: 22022699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O
    Kang Z; Job Zhang YP; Zhu Z
    Biosens Bioelectron; 2019 May; 132():76-83. PubMed ID: 30856430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications.
    Nazaruk E; Sadowska K; Biernat JF; Rogalski J; Ginalska G; Bilewicz R
    Anal Bioanal Chem; 2010 Oct; 398(4):1651-60. PubMed ID: 20658283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density-cathode potential behavior.
    Rubenwolf S; Strohmeier O; Kloke A; Kerzenmacher S; Zengerle R; von Stetten F
    Biosens Bioelectron; 2010 Oct; 26(2):841-5. PubMed ID: 20627511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.
    Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F
    Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic fuel cells: integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design.
    Rincón RA; Lau C; Luckarift HR; Garcia KE; Adkins E; Johnson GR; Atanassov P
    Biosens Bioelectron; 2011 Sep; 27(1):132-6. PubMed ID: 21775124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O
    Giroud F; Sawada K; Taya M; Cosnier S
    Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots.
    Zhao M; Gao Y; Sun J; Gao F
    Anal Chem; 2015 Mar; 87(5):2615-22. PubMed ID: 25666266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct methanol biocatalytic fuel cell--considerations of restraints on electron transfer.
    Zhang XC; Ranta A; Halme A
    Biosens Bioelectron; 2006 May; 21(11):2052-7. PubMed ID: 16554148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.