These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24954112)

  • 1. Equation of state and adsorption dynamics of soft microgel particles at an air-water interface.
    Deshmukh OS; Maestro A; Duits MH; van den Ende D; Stuart MC; Mugele F
    Soft Matter; 2014 Sep; 10(36):7045-50. PubMed ID: 24954112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology.
    Deshmukh OS; van den Ende D; Stuart MC; Mugele F; Duits MH
    Adv Colloid Interface Sci; 2015 Aug; 222():215-27. PubMed ID: 25288385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A confocal microscopy study of micron-sized poly(N-isopropylacrylamide) microgel particles at the oil-water interface and anisotopic flattening of highly swollen microgel.
    Kwok MH; Ngai T
    J Colloid Interface Sci; 2016 Jan; 461():409-418. PubMed ID: 26414423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption kinetics of NIPAM-based polymers at the air-water interface as studied by pendant drop and bubble tensiometry.
    Gilcreest VP; Dawson KA; Gorelov AV
    J Phys Chem B; 2006 Nov; 110(43):21903-10. PubMed ID: 17064157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the Relative Interfacial Affinity of Soft Colloids With Different Crosslinking Densities in Pickering Emulsions.
    Kwok MH; Ngai T
    Front Chem; 2018; 6():148. PubMed ID: 29765939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels.
    Tatry MC; Qiu Y; Lapeyre V; Garrigue P; Schmitt V; Ravaine V
    J Colloid Interface Sci; 2020 Mar; 561():481-493. PubMed ID: 31740129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating the effect of co-monomer content with responsiveness and interfacial activity of soft particles with stability of corresponding smart emulsions.
    Kwok MH; Ambreen J; Ngai T
    J Colloid Interface Sci; 2019 Jun; 546():293-302. PubMed ID: 30927593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninteracting versus interacting poly(N-isopropylacrylamide)-surfactant mixtures at the air-water interface.
    Jean B; Lee LT
    J Phys Chem B; 2005 Mar; 109(11):5162-7. PubMed ID: 16863180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-Pickering properties.
    Richtering W
    Langmuir; 2012 Dec; 28(50):17218-29. PubMed ID: 23020623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of soft particles at fluid interfaces.
    Style RW; Isa L; Dufresne ER
    Soft Matter; 2015 Oct; 11(37):7412-9. PubMed ID: 26268828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid-fluid interfaces.
    Dugyala VR; Muthukuru JS; Mani E; Basavaraj MG
    Phys Chem Chem Phys; 2016 Feb; 18(7):5499-508. PubMed ID: 26863078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drainage dynamics of thin liquid foam films containing soft PNiPAM microgels: influence of the cross-linking density and concentration.
    Keal L; Lapeyre V; Ravaine V; Schmitt V; Monteux C
    Soft Matter; 2016 Dec; 13(1):170-180. PubMed ID: 27453506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoresponsive microgels at the air-water interface: the impact of the swelling state on interfacial conformation.
    Maldonado-Valderrama J; Del Castillo-Santaella T; Adroher-Benítez I; Moncho-Jordá A; Martín-Molina A
    Soft Matter; 2016 Dec; 13(1):230-238. PubMed ID: 27427242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetric and asymmetric adsorption of pH-responsive gold nanoparticles onto microgel particles and dispersion characterisation.
    Bradley M; Garcia-Risueño BS
    J Colloid Interface Sci; 2011 Mar; 355(2):321-7. PubMed ID: 21215415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly ordered 2D microgel arrays: compression versus self-assembly.
    Geisel K; Richtering W; Isa L
    Soft Matter; 2014 Oct; 10(40):7968-76. PubMed ID: 25154634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of Microgels at the Air-Water Interface under Compression: Role of Electrostatics and Cross-Linking Density.
    Picard C; Garrigue P; Tatry MC; Lapeyre V; Ravaine S; Schmitt V; Ravaine V
    Langmuir; 2017 Aug; 33(32):7968-7981. PubMed ID: 28718651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term adsorption kinetics of asphaltenes at the oil-water interface: a random sequential adsorption perspective.
    Pauchard V; Rane JP; Zarkar S; Couzis A; Banerjee S
    Langmuir; 2014 Jul; 30(28):8381-90. PubMed ID: 24946262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms.
    Brugger B; Vermant J; Richtering W
    Phys Chem Chem Phys; 2010 Nov; 12(43):14573-8. PubMed ID: 20941404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorbed and spread films of amphiphilic triblock copolymers based on poly(2,3-dihydroxypropyl methacrylate) and poly(propylene oxide) at the air-water interface.
    Amado E; Blume A; Kressler J
    Langmuir; 2010 Apr; 26(8):5507-19. PubMed ID: 19950939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.