These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24954281)

  • 1. Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model.
    Chen G; Adleman NE; Saad ZS; Leibenluft E; Cox RW
    Neuroimage; 2014 Oct; 99():571-88. PubMed ID: 24954281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear mixed-effects modeling approach to FMRI group analysis.
    Chen G; Saad ZS; Britton JC; Pine DS; Cox RW
    Neuroimage; 2013 Jun; 73():176-90. PubMed ID: 23376789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM).
    Haverkamp N; Beauducel A
    Front Psychol; 2017; 8():1841. PubMed ID: 29089917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data.
    McFarquhar M; McKie S; Emsley R; Suckling J; Elliott R; Williams S
    Neuroimage; 2016 May; 132():373-389. PubMed ID: 26921716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraclass correlation: Improved modeling approaches and applications for neuroimaging.
    Chen G; Taylor PA; Haller SP; Kircanski K; Stoddard J; Pine DS; Leibenluft E; Brotman MA; Cox RW
    Hum Brain Mapp; 2018 Mar; 39(3):1187-1206. PubMed ID: 29218829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative Bayesian approach to matrix-based analysis in neuroimaging.
    Chen G; Bürkner PC; Taylor PA; Li Z; Yin L; Glen DR; Kinnison J; Cox RW; Pessoa L
    Hum Brain Mapp; 2019 Oct; 40(14):4072-4090. PubMed ID: 31188535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMRI group analysis combining effect estimates and their variances.
    Chen G; Saad ZS; Nath AR; Beauchamp MS; Cox RW
    Neuroimage; 2012 Mar; 60(1):747-65. PubMed ID: 22245637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroimage; 2008 Jul; 41(4):1242-52. PubMed ID: 18482849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated measures ANOVA and adjusted
    Blanca MJ; Arnau J; García-Castro FJ; Alarcón R; Bono R
    Front Psychol; 2023; 14():1192453. PubMed ID: 37711324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroinformatics; 2008; 6(2):123-34. PubMed ID: 18506642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIDAS: Regionally linear multivariate discriminative statistical mapping.
    Varol E; Sotiras A; Davatzikos C
    Neuroimage; 2018 Jul; 174():111-126. PubMed ID: 29524624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Untangling the relatedness among correlations, Part II: Inter-subject correlation group analysis through linear mixed-effects modeling.
    Chen G; Taylor PA; Shin YW; Reynolds RC; Cox RW
    Neuroimage; 2017 Feb; 147():825-840. PubMed ID: 27751943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Group-Level Repeated Measurements of Neuroimaging Data Using the Univariate General Linear Model.
    McFarquhar M
    Front Neurosci; 2019; 13():352. PubMed ID: 31057352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recommendations for analysis of repeated-measures designs: testing and correcting for sphericity and use of manova and mixed model analysis.
    Armstrong RA
    Ophthalmic Physiol Opt; 2017 Sep; 37(5):585-593. PubMed ID: 28726257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-subject correlation in fMRI: method validation against stimulus-model based analysis.
    Pajula J; Kauppi JP; Tohka J
    PLoS One; 2012; 7(8):e41196. PubMed ID: 22924089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis.
    Davis T; LaRocque KF; Mumford JA; Norman KA; Wagner AD; Poldrack RA
    Neuroimage; 2014 Aug; 97():271-83. PubMed ID: 24768930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data.
    Kim J; Zhu W; Chang L; Bentler PM; Ernst T
    Hum Brain Mapp; 2007 Feb; 28(2):85-93. PubMed ID: 16718669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond linearity in neuroimaging: Capturing nonlinear relationships with application to longitudinal studies.
    Chen G; Nash TA; Cole KM; Kohn PD; Wei SM; Gregory MD; Eisenberg DP; Cox RW; Berman KF; Shane Kippenhan J
    Neuroimage; 2021 Jun; 233():117891. PubMed ID: 33667672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection.
    Soch J; Haynes JD; Allefeld C
    Neuroimage; 2016 Nov; 141():469-489. PubMed ID: 27477536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.