These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24954281)

  • 21. Handling Multiplicity in Neuroimaging Through Bayesian Lenses with Multilevel Modeling.
    Chen G; Xiao Y; Taylor PA; Rajendra JK; Riggins T; Geng F; Redcay E; Cox RW
    Neuroinformatics; 2019 Oct; 17(4):515-545. PubMed ID: 30649677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting the subtle shape differences in hemodynamic responses at the group level.
    Chen G; Saad ZS; Adleman NE; Leibenluft E; Cox RW
    Front Neurosci; 2015; 9():375. PubMed ID: 26578853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating and testing variance components in a multi-level GLM.
    Lindquist MA; Spicer J; Asllani I; Wager TD
    Neuroimage; 2012 Jan; 59(1):490-501. PubMed ID: 21835242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relevant feature set estimation with a knock-out strategy and random forests.
    Ganz M; Greve DN; Fischl B; Konukoglu E;
    Neuroimage; 2015 Nov; 122():131-48. PubMed ID: 26272728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Support vector machine learning-based fMRI data group analysis.
    Wang Z; Childress AR; Wang J; Detre JA
    Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate autocorrelation modeling substantially improves fMRI reliability.
    Olszowy W; Aston J; Rua C; Williams GB
    Nat Commun; 2019 Dec; 10(1):1220. PubMed ID: 30899012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: Application to Epigenome-Wide Association Studies.
    Guillaume B; Wang C; Poh J; Shen MJ; Ong ML; Tan PF; Karnani N; Meaney M; Qiu A
    Neuroimage; 2018 Jun; 173():57-71. PubMed ID: 29448075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.
    Huertas I; Oldehinkel M; van Oort ESB; Garcia-Solis D; Mir P; Beckmann CF; Marquand AF
    Neuroimage; 2017 Nov; 161():134-148. PubMed ID: 28782681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations.
    Pustina D; Avants B; Faseyitan OK; Medaglia JD; Coslett HB
    Neuropsychologia; 2018 Jul; 115():154-166. PubMed ID: 28882479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling state-related fMRI activity using change-point theory.
    Lindquist MA; Waugh C; Wager TD
    Neuroimage; 2007 Apr; 35(3):1125-41. PubMed ID: 17360198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fighting or embracing multiplicity in neuroimaging? neighborhood leverage versus global calibration.
    Chen G; Taylor PA; Cox RW; Pessoa L
    Neuroimage; 2020 Feb; 206():116320. PubMed ID: 31698079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjusting power for a baseline covariate in linear models.
    Glueck DH; Muller KE
    Stat Med; 2003 Aug; 22(16):2535-51. PubMed ID: 12898543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advantages and disadvantages of a fast fMRI sequence in the context of EEG-fMRI investigation of epilepsy patients: A realistic simulation study.
    Safi-Harb M; Proulx S; von Ellenrieder N; Gotman J
    Neuroimage; 2015 Oct; 119():20-32. PubMed ID: 26093328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comment on the severity of the effects of non-white noise in fMRI time-series.
    Smith AT; Singh KD; Balsters JH
    Neuroimage; 2007 Jun; 36(2):282-8. PubMed ID: 17098446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer's disease.
    Habeck C; Stern Y;
    Cell Biochem Biophys; 2010 Nov; 58(2):53-67. PubMed ID: 20658269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of preprocessing strategies in Positron Emission Tomography (PET) neuroimaging: A [
    Nørgaard M; Ganz M; Svarer C; Frokjaer VG; Greve DN; Strother SC; Knudsen GM
    Neuroimage; 2019 Oct; 199():466-479. PubMed ID: 31158479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How to improve parameter estimates in GLM-based fMRI data analysis: cross-validated Bayesian model averaging.
    Soch J; Meyer AP; Haynes JD; Allefeld C
    Neuroimage; 2017 Sep; 158():186-195. PubMed ID: 28669903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the interpretation of weight vectors of linear models in multivariate neuroimaging.
    Haufe S; Meinecke F; Görgen K; Dähne S; Haynes JD; Blankertz B; Bießmann F
    Neuroimage; 2014 Feb; 87():96-110. PubMed ID: 24239590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.