These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24954281)

  • 41. Estimating brain network activity through back-projection of ICA components to GLM maps.
    James GA; Tripathi SP; Kilts CD
    Neurosci Lett; 2014 Apr; 564():21-6. PubMed ID: 24513233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hybrid SVM-GLM approach for fMRI data analysis.
    Wang Z
    Neuroimage; 2009 Jul; 46(3):608-15. PubMed ID: 19303449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Motion correction and the use of motion covariates in multiple-subject fMRI analysis.
    Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ; Oakes TR
    Hum Brain Mapp; 2006 Oct; 27(10):779-88. PubMed ID: 16456818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Permutation-based group sequential analyses for cognitive neuroscience.
    Veillette JP; Ho L; Nusbaum HC
    Neuroimage; 2023 Aug; 277():120232. PubMed ID: 37348624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of the resolution of brain parcels on connectome-wide association studies in fMRI.
    Bellec P; Benhajali Y; Carbonell F; Dansereau C; Albouy G; Pelland M; Craddock C; Collignon O; Doyon J; Stip E; Orban P
    Neuroimage; 2015 Dec; 123():212-28. PubMed ID: 26241681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonparametric permutation tests for functional neuroimaging: a primer with examples.
    Nichols TE; Holmes AP
    Hum Brain Mapp; 2002 Jan; 15(1):1-25. PubMed ID: 11747097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatially adaptive mixture modeling for analysis of FMRI time series.
    Vincent T; Risser L; Ciuciu P
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1059-74. PubMed ID: 20350840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses.
    Handwerker DA; Ollinger JM; D'Esposito M
    Neuroimage; 2004 Apr; 21(4):1639-51. PubMed ID: 15050587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations.
    Woo CW; Krishnan A; Wager TD
    Neuroimage; 2014 May; 91():412-9. PubMed ID: 24412399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A cautionary tale on the effects of different covariance structures in linear mixed effects modeling of fMRI data.
    van der Horn HJ; Erhardt EB; Dodd AB; Nathaniel U; Wick TV; McQuaid JR; Ryman SG; Vakhtin AA; Meier TB; Mayer AR
    Hum Brain Mapp; 2024 May; 45(7):e26699. PubMed ID: 38726907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Testing for spatial heterogeneity in functional MRI using the multivariate general linear model.
    Leech R; Leech D
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1293-302. PubMed ID: 21324775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control.
    Stelzer J; Chen Y; Turner R
    Neuroimage; 2013 Jan; 65():69-82. PubMed ID: 23041526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multivariate group-level analysis for task fMRI data with canonical correlation analysis.
    Zhuang X; Yang Z; Sreenivasan KR; Mishra VR; Curran T; Nandy R; Cordes D
    Neuroimage; 2019 Jul; 194():25-41. PubMed ID: 30894332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploration of scanning effects in multi-site structural MRI studies.
    Chen J; Liu J; Calhoun VD; Arias-Vasquez A; Zwiers MP; Gupta CN; Franke B; Turner JA
    J Neurosci Methods; 2014 Jun; 230():37-50. PubMed ID: 24785589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling brain activation in fMRI using group MRF.
    Ng B; Hamarneh G; Abugharbieh R
    IEEE Trans Med Imaging; 2012 May; 31(5):1113-23. PubMed ID: 22287237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correlation and heritability in neuroimaging datasets: a spatial decomposition approach with application to an fMRI study of twins.
    Park J; Shedden K; Polk TA
    Neuroimage; 2012 Jan; 59(2):1132-42. PubMed ID: 21763433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.
    Gopinath K; Krishnamurthy V; Lacey S; Sathian K
    Brain Connect; 2018 Feb; 8(1):10-21. PubMed ID: 29161884
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data.
    Bernal-Rusiel JL; Reuter M; Greve DN; Fischl B; Sabuncu MR;
    Neuroimage; 2013 Nov; 81():358-370. PubMed ID: 23702413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.