These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 24954446)
1. Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor. Gao R; Choi N; Chang SI; Lee EK; Choo J Nanoscale; 2014 Aug; 6(15):8781-6. PubMed ID: 24954446 [TBL] [Abstract][Full Text] [Related]
2. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Chung E; Gao R; Ko J; Choi N; Lim DW; Lee EK; Chang SI; Choo J Lab Chip; 2013 Jan; 13(2):260-6. PubMed ID: 23208150 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Gao R; Choi N; Chang SI; Kang SH; Song JM; Cho SI; Lim DW; Choo J Anal Chim Acta; 2010 Nov; 681(1-2):87-91. PubMed ID: 21035607 [TBL] [Abstract][Full Text] [Related]
4. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. Li J; Chen L; Lou T; Wang Y ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330 [TBL] [Abstract][Full Text] [Related]
6. Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Wang G; Lim C; Chen L; Chon H; Choo J; Hong J; deMello AJ Anal Bioanal Chem; 2009 Aug; 394(7):1827-32. PubMed ID: 19444432 [TBL] [Abstract][Full Text] [Related]
7. Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Hidi IJ; Jahn M; Weber K; Cialla-May D; Popp J Phys Chem Chem Phys; 2015 Sep; 17(33):21236-42. PubMed ID: 25613024 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Song C; Yang B; Zhu Y; Yang Y; Wang L Biosens Bioelectron; 2017 Jan; 87():59-65. PubMed ID: 27522013 [TBL] [Abstract][Full Text] [Related]
9. Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Guo H; Xing B; He L Environ Pollut; 2016 Apr; 211():198-205. PubMed ID: 26774766 [TBL] [Abstract][Full Text] [Related]
10. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS. Sun D; Cao F; Xu W; Chen Q; Shi W; Xu S Anal Chem; 2019 Feb; 91(3):2551-2558. PubMed ID: 30624061 [TBL] [Abstract][Full Text] [Related]
12. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering. De Bleye C; Dumont E; Hubert C; Sacré PY; Netchacovitch L; Chavez PF; Hubert P; Ziemons E Anal Chim Acta; 2015 Aug; 888():118-25. PubMed ID: 26320966 [TBL] [Abstract][Full Text] [Related]
13. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection. Tan EZ; Yin PG; You TT; Wang H; Guo L ACS Appl Mater Interfaces; 2012 Jul; 4(7):3432-7. PubMed ID: 22708788 [TBL] [Abstract][Full Text] [Related]
14. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Cheng ML; Tsai BC; Yang J Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349 [TBL] [Abstract][Full Text] [Related]
15. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Chung E; Jeon J; Yu J; Lee C; Choo J Biosens Bioelectron; 2015 Feb; 64():560-5. PubMed ID: 25310489 [TBL] [Abstract][Full Text] [Related]
16. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Yazdi SH; White IM Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879 [TBL] [Abstract][Full Text] [Related]
17. ECO-FRIENDLY hybrid hydrogels for detection of phenolic RESIDUES in water using SERS. Dutra MAL; Marques NDN; Fernandes RDS; de Souza Filho MSM; Balaban RC Ecotoxicol Environ Saf; 2020 Sep; 200():110771. PubMed ID: 32464443 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Guo H; Xing B; Hamlet LC; Chica A; He L Sci Total Environ; 2016 Jun; 554-555():246-52. PubMed ID: 26956173 [TBL] [Abstract][Full Text] [Related]
19. Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners. Sun B; Jiang X; Wang H; Song B; Zhu Y; Wang H; Su Y; He Y Anal Chem; 2015 Jan; 87(2):1250-6. PubMed ID: 25526293 [TBL] [Abstract][Full Text] [Related]
20. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications. Visaveliya N; Lenke S; Köhler JM ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]