These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24954583)

  • 1. Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana.
    Maumus F; Quesneville H
    Nat Commun; 2014 Jun; 5():4104. PubMed ID: 24954583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter.
    Maumus F; Quesneville H
    PLoS One; 2014; 9(4):e94101. PubMed ID: 24709859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic Distribution of Recombinant Plant Chromosome Fragments in a Human-
    Liaw Y; Liu Y; Teo C; Cápal P; Wada N; Fukui K; Doležel J; Ohmido N
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization.
    Seymour DK; Koenig D; Hagmann J; Becker C; Weigel D
    PLoS Genet; 2014 Nov; 10(11):e1004785. PubMed ID: 25393550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bursts of retrotransposition reproduced in Arabidopsis.
    Tsukahara S; Kobayashi A; Kawabe A; Mathieu O; Miura A; Kakutani T
    Nature; 2009 Sep; 461(7262):423-6. PubMed ID: 19734880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid divergence of repetitive DNAs in Brassica relatives.
    Koo DH; Hong CP; Batley J; Chung YS; Edwards D; Bang JW; Hur Y; Lim YP
    Genomics; 2011 Mar; 97(3):173-85. PubMed ID: 21159321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and genomic organization of centromeric repeats in Arabidopsis species.
    Kawabe A; Nasuda S
    Mol Genet Genomics; 2005 Feb; 272(6):593-602. PubMed ID: 15586291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of repetitive DNA elements in Arabidopsis.
    Surzycki SA; Belknap WR
    J Mol Evol; 1999 Jun; 48(6):684-91. PubMed ID: 10229572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intertwined evolution of plant epigenomes and genomes.
    Ritter EJ; Niederhuth CE
    Curr Opin Plant Biol; 2021 Jun; 61():101990. PubMed ID: 33445143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.
    Dai S; Hou J; Long Y; Wang J; Li C; Xiao Q; Jiang X; Zou X; Zou J; Meng J
    BMC Plant Biol; 2015 Jun; 15():149. PubMed ID: 26084405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated Evolution of Large DNA Fragments in the 3D Genome of Arabidopsis thaliana.
    Yan Y; Li Z; Li Y; Wu Z; Yang R
    Mol Biol Evol; 2020 Jun; 37(6):1621-1636. PubMed ID: 32044988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history.
    Rathore P; Geeta R; Das S
    Plant Sci; 2016 Jun; 247():35-48. PubMed ID: 27095398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties.
    Masoudi-Nejad A; Movahedi S; Jáuregui R
    BMC Genomics; 2011 May; 12():214. PubMed ID: 21548945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L.
    Brandes A; Thompson H; Dean C; Heslop-Harrison JS
    Chromosome Res; 1997 Jun; 5(4):238-46. PubMed ID: 9244451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids.
    Chen M; Ha M; Lackey E; Wang J; Chen ZJ
    Genetics; 2008 Apr; 178(4):1845-58. PubMed ID: 18430920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Differentially Methylated Regions in the Genome of Arabidopsis thaliana.
    Kishore K; Pelizzola M
    Methods Mol Biol; 2018; 1675():61-69. PubMed ID: 29052185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of non-CG genomic hypomethylation associated with gamma-ray-induced suppression of CMT3 transcription in Arabidopsis thaliana.
    Kim JE; Lee MH; Cho EJ; Kim JH; Chung BY; Kim JH
    Radiat Res; 2013 Dec; 180(6):638-48. PubMed ID: 24279389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation bias reflects natural selection in Arabidopsis thaliana.
    Monroe JG; Srikant T; Carbonell-Bejerano P; Becker C; Lensink M; Exposito-Alonso M; Klein M; Hildebrandt J; Neumann M; Kliebenstein D; Weng ML; Imbert E; Ågren J; Rutter MT; Fenster CB; Weigel D
    Nature; 2022 Feb; 602(7895):101-105. PubMed ID: 35022609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes.
    Sun CW; Griffen S; Callis J
    Plant Mol Biol; 1997 Jul; 34(5):745-58. PubMed ID: 9278165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome.
    Thompson HL; Schmidt R; Dean C
    Nucleic Acids Res; 1996 Aug; 24(15):3017-22. PubMed ID: 8760888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.