BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24954593)

  • 21. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations.
    Poburko D; Santo-Domingo J; Demaurex N
    J Biol Chem; 2011 Apr; 286(13):11672-84. PubMed ID: 21224385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms.
    Kadenbach B; Ramzan R; Wen L; Vogt S
    Biochim Biophys Acta; 2010 Mar; 1800(3):205-12. PubMed ID: 19409964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase.
    Belevich I; Verkhovsky MI; Wikström M
    Nature; 2006 Apr; 440(7085):829-32. PubMed ID: 16598262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton migration along the membrane surface and retarded surface to bulk transfer.
    Heberle J; Riesle J; Thiedemann G; Oesterhelt D; Dencher NA
    Nature; 1994 Aug; 370(6488):379-82. PubMed ID: 8047144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relations between the electrical potential, pH gradient, proton flux and phosphorylation in the photosynthetic membrane.
    Gräber P; Witt HT
    Biochim Biophys Acta; 1976 Feb; 423(2):141-63. PubMed ID: 2316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane.
    Morelli AM; Ravera S; Calzia D; Panfoli I
    Open Biol; 2019 Apr; 9(4):180221. PubMed ID: 30966998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton translocation by cytochrome c oxidase.
    Verkhovsky MI; Jasaitis A; Verkhovskaya ML; Morgan JE; Wikström M
    Nature; 1999 Jul; 400(6743):480-3. PubMed ID: 10440381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis.
    Ogawa S; Lee TM
    J Biol Chem; 1984 Aug; 259(16):10004-11. PubMed ID: 6469951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes.
    Rieger B; Junge W; Busch KB
    Nat Commun; 2014; 5():3103. PubMed ID: 24476986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The electrochemical transmission in I-Band segments of the mitochondrial reticulum.
    Patel KD; Glancy B; Balaban RS
    Biochim Biophys Acta; 2016 Aug; 1857(8):1284-1289. PubMed ID: 26921810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation.
    Kell DB
    Adv Microb Physiol; 2021; 78():1-177. PubMed ID: 34147184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle.
    Ferreira AM; Bashford D
    J Am Chem Soc; 2006 Dec; 128(51):16778-90. PubMed ID: 17177428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane.
    Steinberg-Yfrach G; Rigaud JL; Durantini EN; Moore AL; Gust D; Moore TA
    Nature; 1998 Apr; 392(6675):479-82. PubMed ID: 9548252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.
    Sun F; Zhou Q; Pang X; Xu Y; Rao Z
    Curr Opin Struct Biol; 2013 Aug; 23(4):526-38. PubMed ID: 23867107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active proton leak in mitochondria: a new way to regulate substrate oxidation.
    Mourier A; Devin A; Rigoulet M
    Biochim Biophys Acta; 2010 Feb; 1797(2):255-61. PubMed ID: 19896922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial energetics with transmembrane electrostatically localized protons: do we have a thermotrophic feature?
    Lee JW
    Sci Rep; 2021 Jul; 11(1):14575. PubMed ID: 34272427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Interaction of surface-active base with fraction of membrane-bound Williams's protons].
    Iaguzhinskiĭ LS; Motovilov KA; Volkov EM; Eremeev SA
    Biofizika; 2013; 58(1):117-25. PubMed ID: 23650862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures and proton-pumping strategies of mitochondrial respiratory enzymes.
    Schultz BE; Chan SI
    Annu Rev Biophys Biomol Struct; 2001; 30():23-65. PubMed ID: 11340051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.