These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24954736)

  • 1. A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission.
    Tchumatchenko T; Reichenbach T
    Nat Commun; 2014 Jun; 5():4160. PubMed ID: 24954736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions.
    He W; Ren T
    Sci Rep; 2013; 3():1874. PubMed ID: 23695199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction of wave propagation in the cochlea for internally excited basilar membrane.
    Li Y; Grosh K
    J Acoust Soc Am; 2012 Jun; 131(6):4710-21. PubMed ID: 22712944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse propagation of sound in the gerbil cochlea.
    Ren T
    Nat Neurosci; 2004 Apr; 7(4):333-4. PubMed ID: 15034589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydromechanical Structure of the Cochlea Supports the Backward Traveling Wave in the Cochlea
    Chen F; Zha D; Yang X; Hubbard A; Nuttall A
    Neural Plast; 2018; 2018():7502648. PubMed ID: 30123255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model.
    Nobili R; Vetesnik A; Turicchia L; Mammano F
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):478-94. PubMed ID: 14716508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element simulation of cochlear traveling wave under air and bone conduction hearing.
    Ren LJ; Yu Y; Fang YQ; Hua C; Dai PD; Zhang TY
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1251-1265. PubMed ID: 33786715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone conduction: an explanation for this phenomenon comprising complex mechanisms.
    Dauman R
    Eur Ann Otorhinolaryngol Head Neck Dis; 2013 Sep; 130(4):209-13. PubMed ID: 23743177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflections on the role of a traveling wave along the basilar membrane in view of clinical and experimental findings.
    Sohmer H
    Eur Arch Otorhinolaryngol; 2015 Mar; 272(3):531-5. PubMed ID: 24740735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waves on Reissner's membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea.
    Reichenbach T; Stefanovic A; Nin F; Hudspeth AJ
    Cell Rep; 2012 Apr; 1(4):374-84. PubMed ID: 22580949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.