BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

908 related articles for article (PubMed ID: 24954909)

  • 1. Advances in synthesis of calcium phosphate crystals with controlled size and shape.
    Lin K; Wu C; Chang J
    Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosized and nanocrystalline calcium orthophosphates.
    Dorozhkin SV
    Acta Biomater; 2010 Mar; 6(3):715-34. PubMed ID: 19861183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior.
    Bongio M; van den Beucken JJ; Nejadnik MR; Leeuwenburgh SC; Kinard LA; Kasper FK; Mikos AG; Jansen JA
    Eur Cell Mater; 2011 Dec; 22():359-76. PubMed ID: 22179935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute.
    Wu Y; Jiang W; Wen X; He B; Zeng X; Wang G; Gu Z
    Biomed Mater; 2010 Feb; 5(1):15001. PubMed ID: 20057017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate.
    Mavis B; Demirtaş TT; Gümüşderelioğlu M; Gündüz G; Colak U
    Acta Biomater; 2009 Oct; 5(8):3098-111. PubMed ID: 19426840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates.
    Ma J; Wang J; Ai X; Zhang S
    Biotechnol Adv; 2014; 32(4):744-60. PubMed ID: 24211471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized biomimetic calcium phosphates for bone tissue repair.
    Bigi A; Boanini E
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e313-e325. PubMed ID: 28574097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.
    Leeuwenburgh SC; Jansen JA; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals.
    Wang H; Bongio M; Farbod K; Nijhuis AW; van den Beucken J; Boerman OC; van Hest JC; Li Y; Jansen JA; Leeuwenburgh SC
    Acta Biomater; 2014 Jan; 10(1):508-19. PubMed ID: 24012604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts.
    Liao S; Ngiam M; Watari F; Ramakrishna S; Chan CK
    Bioinspir Biomim; 2007 Sep; 2(3):37-41. PubMed ID: 17848789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair.
    Dee P; You HY; Teoh SH; Le Ferrand H
    J Mech Behav Biomed Mater; 2020 Dec; 112():104078. PubMed ID: 32932158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramic bioactivity: progresses, challenges and perspectives.
    Lee KY; Park M; Kim HM; Lim YJ; Chun HJ; Kim H; Moon SH
    Biomed Mater; 2006 Jun; 1(2):R31-7. PubMed ID: 18460754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic-Inorganic Composites Toward Biomaterial Application.
    Miyazaki T; Sugawara-Narutaki A; Ohtsuki C
    Front Oral Biol; 2015; 17():33-8. PubMed ID: 26201274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparing nano-calcium phosphate particles via a biologically friendly pathway.
    Hu Q; Ji H; Liu Y; Zhang M; Xu X; Tang R
    Biomed Mater; 2010 Aug; 5(4):041001. PubMed ID: 20603529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1.
    He G; Dahl T; Veis A; George A
    Nat Mater; 2003 Aug; 2(8):552-8. PubMed ID: 12872163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the biological function of calcium phosphate bone substitutes with drugs.
    Verron E; Bouler JM; Guicheux J
    Acta Biomater; 2012 Oct; 8(10):3541-51. PubMed ID: 22729019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering.
    Ebrahimi M; Botelho M; Lu W; Monmaturapoj N
    J Biomed Mater Res A; 2019 Aug; 107(8):1654-1666. PubMed ID: 30916848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications.
    Yan LP; Silva-Correia J; Correia C; Caridade SG; Fernandes EM; Sousa RA; Mano JF; Oliveira JM; Oliveira AL; Reis RL
    Nanomedicine (Lond); 2013 Mar; 8(3):359-78. PubMed ID: 23259755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomineral-Inspired Colloidal Liquid Crystals: From Assembly of Hybrids Comprising Inorganic Nanocrystals and Organic Polymer Components to Their Functionalization.
    Nakayama M; Kato T
    Acc Chem Res; 2022 Jul; 55(13):1796-1808. PubMed ID: 35699654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations.
    Brouillet F; Laurencin D; Grossin D; Drouet C; Estournes C; Chevallier G; Rey C
    J Mater Sci Mater Med; 2015 Aug; 26(8):223. PubMed ID: 26271216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.