These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24954976)

  • 1. False-positive reduction in mammography using multiscale spatial Weber law descriptor and support vector machines.
    Hussain M
    Neural Comput Appl; 2014; 25(1):83-93. PubMed ID: 24954976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A textural approach for mass false positive reduction in mammography.
    Lladó X; Oliver A; Freixenet J; Martí R; Martí J
    Comput Med Imaging Graph; 2009 Sep; 33(6):415-22. PubMed ID: 19406614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification.
    Dhahbi S; Barhoumi W; Kurek J; Swiderski B; Kruk M; Zagrouba E
    Comput Methods Programs Biomed; 2018 Jul; 160():75-83. PubMed ID: 29728249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis.
    Wei D; Chan HP; Petrick N; Sahiner B; Helvie MA; Adler DD; Goodsitt MM
    Med Phys; 1997 Jun; 24(6):903-14. PubMed ID: 9198026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features.
    Masotti M; Lanconelli N; Campanini R
    Med Phys; 2009 Feb; 36(2):311-6. PubMed ID: 19291970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.
    Zyout I; Czajkowska J; Grzegorzek M
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():95-107. PubMed ID: 25795630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms.
    Guo Q; Shao J; Ruiz VF
    Int J Comput Assist Radiol Surg; 2009 Jan; 4(1):11-25. PubMed ID: 20033598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis.
    Wei D; Chan HP; Helvie MA; Sahiner B; Petrick N; Adler DD; Goodsitt MM
    Med Phys; 1995 Sep; 22(9):1501-13. PubMed ID: 8531882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic breast mass detection in mammograms using density of wavelet coefficients and a patch-based CNN.
    NiroomandFam B; Nikravanshalmani A; Khalilian M
    Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1805-1815. PubMed ID: 34374941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system.
    Catarious DM; Baydush AH; Floyd CE
    Med Phys; 2004 Jun; 31(6):1512-20. PubMed ID: 15259655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of mammographic masses based on level set segmentation with new image features and patient information.
    Shi J; Sahiner B; Chan HP; Ge J; Hadjiiski L; Helvie MA; Nees A; Wu YT; Wei J; Zhou C; Zhang Y; Cui J
    Med Phys; 2008 Jan; 35(1):280-90. PubMed ID: 18293583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A completely automated CAD system for mass detection in a large mammographic database.
    Bellotti R; De Carlo F; Tangaro S; Gargano G; Maggipinto G; Castellano M; Massafra R; Cascio D; Fauci F; Magro R; Raso G; Lauria A; Forni G; Bagnasco S; Cerello P; Zanon E; Cheran SC; Lopez Torres E; Bottigli U; Masala GL; Oliva P; Retico A; Fantacci ME; Cataldo R; De Mitri I; De Nunzio G
    Med Phys; 2006 Aug; 33(8):3066-75. PubMed ID: 16964885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of MPEG-7 textural features for improved mass detection in mammography.
    Eltonsy NH; Tourassi GD; Fadeev A; Elmaghraby AS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4779-82. PubMed ID: 17946650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms.
    Choi JY; Ro YM
    Phys Med Biol; 2012 Nov; 57(21):7029-52. PubMed ID: 23053352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer-aided detection of the architectural distortion in digital mammograms using the fractal dimension measurements of BEMD.
    Zyout I; Togneri R
    Comput Med Imaging Graph; 2018 Dec; 70():173-184. PubMed ID: 29691123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature and knowledge based analysis for reduction of false positives in the computerized detection of masses in screening mammography.
    Tourassi GD; Eltonsy NH; Graham JH; Floyd CE; Elmaghraby AS
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6524-7. PubMed ID: 17281764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space.
    Chan HP; Wei D; Helvie MA; Sahiner B; Adler DD; Goodsitt MM; Petrick N
    Phys Med Biol; 1995 May; 40(5):857-76. PubMed ID: 7652012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New GLLD Operator for Mass Detection in Digital Mammograms.
    Gargouri N; Dammak Masmoudi A; Sellami Masmoudi D; Abid R
    Int J Biomed Imaging; 2012; 2012():765649. PubMed ID: 23365556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.