These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24955114)

  • 1. High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development.
    Lupoi JS; Singh S; Davis M; Lee DJ; Shepherd M; Simmons BA; Henry RJ
    Biotechnol Biofuels; 2014; 7():93. PubMed ID: 24955114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Approach to Screen the Capability of Raman and Infrared (Mid- and Near-) Spectroscopy for Quantification of Low-Active Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of Alprazolam.
    Makraduli L; Makreski P; Goracinova K; Stefov S; Anevska M; Geskovski N
    Appl Spectrosc; 2020 Jun; 74(6):661-673. PubMed ID: 32031007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process.
    Castillo Rdel P; Baeza J; Rubilar J; Rivera A; Freer J
    Appl Biochem Biotechnol; 2012 Dec; 168(7):2028-42. PubMed ID: 23070712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy.
    Sun L; Varanasi P; Yang F; Loqué D; Simmons BA; Singh S
    Biotechnol Bioeng; 2012 Mar; 109(3):647-56. PubMed ID: 22012706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Individual and Integrated Inline Raman, Near-Infrared, and Mid-Infrared Spectroscopic Models to Predict the Viscosity of Micellar Liquids.
    Haroon K; Arafeh A; Cunliffe S; Martin P; Rodgers T; Mendoza Ć; Baker M
    Appl Spectrosc; 2020 Jul; 74(7):819-831. PubMed ID: 32312088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Syringyl Units in Wood Lignins by FT-Raman Spectroscopy.
    Agarwal UP; Ralph SA; Padmakshan D; Liu S; Foster CE
    J Agric Food Chem; 2019 Apr; 67(15):4367-4374. PubMed ID: 30916944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of holocellulose and lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection.
    Liang L; Wei L; Fang G; Xu F; Deng Y; Shen K; Tian Q; Wu T; Zhu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117515. PubMed ID: 31521985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopy for wine analyses: A comparison with near and mid infrared spectroscopy.
    Teixeira Dos Santos CA; Páscoa RNMJ; Porto PALS; Cerdeira AL; González-Sáiz JM; Pizarro C; Lopes JA
    Talanta; 2018 Aug; 186():306-314. PubMed ID: 29784366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.
    Cetinkol ÖP; Smith-Moritz AM; Cheng G; Lao J; George A; Hong K; Henry R; Simmons BA; Heazlewood JL; Holmes BM
    PLoS One; 2012; 7(12):e52820. PubMed ID: 23300786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stacked regression ensemble approach for the quantitative determination of biomass feedstock compositions using near infrared spectroscopy.
    Dumancas G; Adrianto I
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121231. PubMed ID: 35427923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils.
    Xing Z; Du C; Tian K; Ma F; Shen Y; Zhou J
    Talanta; 2016 Sep; 158():262-269. PubMed ID: 27343604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling.
    Robinson AR; Mansfield SD
    Plant J; 2009 May; 58(4):706-14. PubMed ID: 19175772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.
    Guo C; Luo X; Zhou X; Shi B; Wang J; Zhao J; Zhang X
    J Pharm Biomed Anal; 2017 Jun; 140():130-136. PubMed ID: 28359962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy.
    Payne CE; Wolfrum EJ
    Biotechnol Biofuels; 2015; 8():43. PubMed ID: 25834638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass.
    Happs RM; Addison B; Doeppke C; Donohoe BS; Davis MF; Harman-Ware AE
    Biotechnol Biofuels; 2021 Mar; 14(1):58. PubMed ID: 33676549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy.
    Lupoi JS; Smith EA
    Appl Spectrosc; 2012 Aug; 66(8):903-10. PubMed ID: 22800567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy.
    Hou S; Li L
    J Integr Plant Biol; 2011 Feb; 53(2):166-75. PubMed ID: 21261813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms.
    Dzurendova S; Olsen PM; Byrtusová D; Tafintseva V; Shapaval V; Horn SJ; Kohler A; Szotkowski M; Marova I; Zimmermann B
    Microb Cell Fact; 2023 Dec; 22(1):261. PubMed ID: 38110983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ near-infrared (NIR) versus high-throughput mid-infrared (MIR) spectroscopy to monitor biopharmaceutical production.
    Sales KC; Rosa F; Sampaio PN; Fonseca LP; Lopes MB; Calado CR
    Appl Spectrosc; 2015 Jun; 69(6):760-72. PubMed ID: 25955848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating lignin key features in maize lignocelluloses using infrared spectroscopy.
    Chazal R; Robert P; Durand S; Devaux MF; Saulnier L; Lapierre C; Guillon F
    Appl Spectrosc; 2014; 68(12):1342-7. PubMed ID: 25358069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.