These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24955372)

  • 1. Stratification of gene coexpression patterns and GO function mining for a RNA-Seq data series.
    Zhao H; Cao F; Gong Y; Xu H; Fei Y; Wu L; Ye X; Yang D; Liu X; Li X; Zhou J
    Biomed Res Int; 2014; 2014():969768. PubMed ID: 24955372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.
    Ye N; Yin H; Liu J; Dai X; Yin T
    Biomed Res Int; 2015; 2015():853734. PubMed ID: 26199946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An iterative data mining approach for mining overlapping coexpression patterns in noisy gene expression data.
    Ma PC; Chan KC
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):252-8. PubMed ID: 19605326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CODC: a Copula-based model to identify differential coexpression.
    Ray S; Lall S; Bandyopadhyay S
    NPJ Syst Biol Appl; 2020 Jun; 6(1):20. PubMed ID: 32561750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of RNA-seq- and microarray-derived coexpression networks in Arabidopsis thaliana.
    Giorgi FM; Del Fabbro C; Licausi F
    Bioinformatics; 2013 Mar; 29(6):717-24. PubMed ID: 23376351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing RNA-Seq data for de novo coexpression network inference.
    Iancu OD; Kawane S; Bottomly D; Searles R; Hitzemann R; McWeeney S
    Bioinformatics; 2012 Jun; 28(12):1592-7. PubMed ID: 22556371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates.
    Yoon S; Kim SY; Nam D
    PLoS One; 2016; 11(11):e0165919. PubMed ID: 27829002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Coexpression Network Analysis for Gene Expression Data.
    Liu BH
    Methods Mol Biol; 2018; 1754():155-165. PubMed ID: 29536442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction.
    Wang J; Ma Z; Carr SA; Mertins P; Zhang H; Zhang Z; Chan DW; Ellis MJ; Townsend RR; Smith RD; McDermott JE; Chen X; Paulovich AG; Boja ES; Mesri M; Kinsinger CR; Rodriguez H; Rodland KD; Liebler DC; Zhang B
    Mol Cell Proteomics; 2017 Jan; 16(1):121-134. PubMed ID: 27836980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding temporal gene expression patterns for translational research.
    Tusch G; Tolea O; Kutsumi Y; Sam VK; Mamidi L
    Stud Health Technol Inform; 2013; 192():1173. PubMed ID: 23920947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.
    Zhu M; Dahmen JL; Stacey G; Cheng J
    BMC Bioinformatics; 2013 Sep; 14():278. PubMed ID: 24053776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PlantExpress: A Database Integrating OryzaExpress and ArthaExpress for Single-species and Cross-species Gene Expression Network Analyses with Microarray-Based Transcriptome Data.
    Kudo T; Terashima S; Takaki Y; Tomita K; Saito M; Kanno M; Yokoyama K; Yano K
    Plant Cell Physiol; 2017 Jan; 58(1):e1. PubMed ID: 28158643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent component analysis: mining microarray data for fundamental human gene expression modules.
    Engreitz JM; Daigle BJ; Marshall JJ; Altman RB
    J Biomed Inform; 2010 Dec; 43(6):932-44. PubMed ID: 20619355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules.
    Tesson BM; Breitling R; Jansen RC
    BMC Bioinformatics; 2010 Oct; 11():497. PubMed ID: 20925918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Module Based Differential Coexpression Analysis Method for Type 2 Diabetes.
    Yuan L; Zheng CH; Xia JF; Huang DS
    Biomed Res Int; 2015; 2015():836929. PubMed ID: 26339648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data.
    Johnson KA; Krishnan A
    Genome Biol; 2022 Jan; 23(1):1. PubMed ID: 34980209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks.
    Pavesi G
    Adv Biochem Eng Biotechnol; 2017; 160():1-14. PubMed ID: 28070596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequent patterns mining in multiple biological sequences.
    Chen L; Liu W
    Comput Biol Med; 2013 Oct; 43(10):1444-52. PubMed ID: 24034736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.