These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24955627)

  • 1. pH-Sensitive Hydrogel for Micro-Fluidic Valve.
    Zhang Y; Liu Z; Swaddiwudhipong S; Miao H; Ding Z; Yang Z
    J Funct Biomater; 2012 Jul; 3(3):464-79. PubMed ID: 24955627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient swelling response of pH-sensitive hydrogels: A monophasic constitutive model and numerical implementation.
    Bayat MR; Dolatabadi R; Baghani M
    Int J Pharm; 2020 Mar; 577():119030. PubMed ID: 31953086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].
    Siewert S; Sämann M; Schmidt W; Stiehm M; Falke K; Grabow N; Guthoff R; Schmitz KP
    Klin Monbl Augenheilkd; 2015 Dec; 232(12):1374-80. PubMed ID: 26678899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the chordae structure and dynamic behaviour of the mitral valve.
    Feng L; Qi N; Gao H; Sun W; Vazquez M; Griffith BE; Luo X
    IMA J Appl Math; 2018 Nov; 83(6):1066-1091. PubMed ID: 30655652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications.
    Franke M; Leubner S; Dubavik A; George A; Savchenko T; Pini C; Frank P; Melnikau D; Rakovich Y; Gaponik N; Eychmüller A; Richter A
    Nanoscale Res Lett; 2017 Dec; 12(1):314. PubMed ID: 28454480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of a fast-response magnetic-sensitive hydrogel for dynamic control of microfluidic flow.
    Liu Q; Li H; Lam KY
    Phys Chem Chem Phys; 2019 Jan; 21(4):1852-1862. PubMed ID: 30629060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-Structure Interaction Analysis on Membrane Behavior of a Microfluidic Passive Valve.
    Lin ZH; Li XJ; Jin ZJ; Qian JY
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33096936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of fluid-structure interaction simulations of the opening phase of phantom mitral heart valves under physiologically inspired conditions.
    Christierson L; Frieberg P; Lala T; Töger J; Liuba P; Revstedt J; Isaksson H; Hakacova N
    Comput Biol Med; 2024 Mar; 171():108033. PubMed ID: 38430739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Accuracy of Structural and FSI Heart Valves Simulations.
    Luraghi G; Migliavacca F; Rodriguez Matas JF
    Cardiovasc Eng Technol; 2018 Dec; 9(4):723-738. PubMed ID: 30132282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation.
    Azizi P; Drobek C; Budday S; Seitz H
    Front Bioeng Biotechnol; 2023; 11():1249867. PubMed ID: 37799813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators.
    Yew YK; Ng TY; Li H; Lam KY
    Biomed Microdevices; 2007 Aug; 9(4):487-99. PubMed ID: 17520372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation?
    Luraghi G; Wu W; De Gaetano F; Rodriguez Matas JF; Moggridge GD; Serrani M; Stasiak J; Costantino ML; Migliavacca F
    J Biomech; 2017 Jun; 58():45-51. PubMed ID: 28454910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.