These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24955629)

  • 1. Cell attachment to hydrogel-electrospun fiber mat composite materials.
    Han N; Johnson JK; Bradley PA; Parikh KS; Lannutti JJ; Winter JO
    J Funct Biomater; 2012 Jul; 3(3):497-513. PubMed ID: 24955629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites.
    Han N; Bradley PA; Johnson J; Parikh KS; Hissong A; Calhoun MA; Lannutti JJ; Winter JO
    J Biomater Sci Polym Ed; 2013; 24(17):2018-30. PubMed ID: 23905840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel-electrospun fiber mat composite coatings for neural prostheses.
    Han N; Rao SS; Johnson J; Parikh KS; Bradley PA; Lannutti JJ; Winter JO
    Front Neuroeng; 2011; 4():2. PubMed ID: 21441993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel-electrospun fiber composite materials for hydrophilic protein release.
    Han N; Johnson J; Lannutti JJ; Winter JO
    J Control Release; 2012 Feb; 158(1):165-70. PubMed ID: 22001869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Electrospun Fiber Mat Thickness and Support Method on Cell Morphology.
    Calhoun MA; Chowdhury SS; Nelson MT; Lannutti JJ; Dupaix RB; Winter JO
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31010029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats.
    Fu SZ; Meng XH; Fan J; Yang LL; Wen QL; Ye SJ; Lin S; Wang BQ; Chen LL; Wu JB; Chen Y; Fan JM; Li Z
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):533-42. PubMed ID: 24115465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) copolymer.
    Gong CY; Shi S; Dong PW; Zheng XL; Fu SZ; Guo G; Yang JL; Wei YQ; Qian ZY
    BMC Biotechnol; 2009 Feb; 9():8. PubMed ID: 19210779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication, characterization and determination of biological activities of poly(ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application.
    Oh GW; Ko SC; Je JY; Kim YM; Oh J; Jung WK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1549-1558. PubMed ID: 27341782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of PLLA/chitosan-graft-poly (ε-caprolactone) (CS-g-PCL) composite fibrous mats: The microstructure, performance and proliferation assessment.
    Xu Y; Liu B; Zou L; Sun C; Li W
    Int J Biol Macromol; 2020 Nov; 162():320-332. PubMed ID: 32574742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel composite drug delivery system for honokiol delivery: self-assembled poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles in thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel.
    Gong C; Shi S; Wang X; Wang Y; Fu S; Dong P; Chen L; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Jul; 113(30):10183-8. PubMed ID: 19572675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Fabrication of Fiber Reinforced Three-Dimensional Hydrogel Tissue Engineering Scaffolds.
    Jordan AM; Kim SE; Van de Voorde K; Pokorski JK; Korley LTJ
    ACS Biomater Sci Eng; 2017 Aug; 3(8):1869-1879. PubMed ID: 33429666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model.
    Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH
    Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-ε-Caprolactone/Gelatin Hybrid Electrospun Composite Nanofibrous Mats Containing Ultrasound Assisted Herbal Extract: Antimicrobial and Cell Proliferation Study.
    Ramalingam R; Dhand C; Leung CM; Ezhilarasu H; Prasannan P; Ong ST; Subramanian S; Kamruddin M; Lakshminarayanan R; Ramakrishna S; Verma NK; Arunachalam KD
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30897714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular hydrogels induced rapidly by inclusion complexation of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) block copolymers with alpha-cyclodextrin in aqueous solutions.
    Zhao SP; Zhang LM; Ma D
    J Phys Chem B; 2006 Jun; 110(25):12225-9. PubMed ID: 16800542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.
    Jin G; Lee S; Kim SH; Kim M; Jang JH
    Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer.
    Wang W; Deng L; Liu S; Li X; Zhao X; Hu R; Zhang J; Han H; Dong A
    Acta Biomater; 2012 Nov; 8(11):3963-73. PubMed ID: 22835677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.