BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24955761)

  • 1. Intramolecular cyclization of alkynyl α-ketoanilide utilizing [1,2]-phospha-Brook rearrangement catalyzed by phosphazene base.
    Kondoh A; Aoki T; Terada M
    Org Lett; 2014 Jul; 16(13):3528-31. PubMed ID: 24955761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of phenanthrene derivatives by intramolecular cyclization utilizing the [1,2]-phospha-Brook rearrangement catalyzed by a Brønsted base.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2015 Sep; 21(36):12577-80. PubMed ID: 26303440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organocatalytic Arylation of α-Ketoesters Based on Umpolung Strategy: Phosphazene-Catalyzed S
    Kondoh A; Aoki T; Terada M
    Chemistry; 2018 Sep; 24(50):13110-13113. PubMed ID: 29972597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brønsted Base-Catalyzed Umpolung Intramolecular Cyclization of Alkynyl Imines.
    Kondoh A; Terada M
    Chemistry; 2018 Mar; 24(16):3998-4001. PubMed ID: 29341333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brønsted base-catalyzed three-component coupling reaction of α-ketoesters, imines, and diethyl phosphite utilizing [1,2]-phospha-Brook rearrangement.
    Kondoh A; Terada M
    Org Biomol Chem; 2016 May; 14(20):4704-11. PubMed ID: 27138876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Synthesis of Polysubstituted Pyrroles Based on [3+2] Cycloaddition Strategy Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Iino A; Ishikawa S; Aoki T; Terada M
    Chemistry; 2018 Oct; 24(57):15246-15253. PubMed ID: 30113749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formal Umpolung Addition of Phosphites to 2-Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]-Phospha-Brook Rearrangement.
    Kondoh A; Hirozane T; Terada M
    Chemistry; 2022 Jul; 28(42):e202201240. PubMed ID: 35543698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Terada M
    Chemistry; 2022 Aug; 28(45):e202201198. PubMed ID: 35621328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and Application of Homoenolate Equivalents Utilizing [1,2]-Phospha-Brook Rearrangement under Brønsted Base Catalysis.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2017 Feb; 23(12):2769-2773. PubMed ID: 27918634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brønsted Base-Catalyzed Transformation of α,β-Epoxyketones Utilizing [1,2]-Phospha-Brook Rearrangement for the Synthesis of Allylic Alcohols Having a Tetrasubstituted Alkene Moiety.
    Kondoh A; Tasato N; Aoki T; Terada M
    Org Lett; 2020 Jul; 22(13):5170-5175. PubMed ID: 32610917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective Synthesis of Dihydrocoumarins via [1,2]-Phospha-Brook Rearrangement in Three-Component Coupling Reaction of α-Ketoesters,
    Kaur R; Singh D; Singh RP
    J Org Chem; 2021 Nov; 86(21):15702-15711. PubMed ID: 34637300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular addition of benzyl anion to alkyne utilizing [1,2]-phospha-Brook rearrangement under Brønsted base catalysis.
    Kondoh A; Ozawa R; Aoki T; Terada M
    Org Biomol Chem; 2017 Sep; 15(35):7277-7281. PubMed ID: 28849855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brønsted base-catalyzed 1,2-addition/[1,2]-phospha-Brook rearrangement sequence providing functionalized phosphonates.
    Kondoh A; Terada M
    Org Biomol Chem; 2022 Apr; 20(14):2863-2866. PubMed ID: 35302579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brønsted base catalyzed [2,3]-Wittig/phospha-Brook tandem rearrangement sequence.
    Kondoh A; Terada M
    Org Lett; 2013 Sep; 15(17):4568-71. PubMed ID: 23980611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Tetrasubstituted Furans through One-Pot Formal [3 + 2] Cycloaddition Utilizing [1,2]-Phospha-Brook Rearrangement.
    Kondoh A; Aita K; Ishikawa S; Terada M
    Org Lett; 2020 Mar; 22(5):2105-2110. PubMed ID: 32097020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to gold-catalyzed cycloisomerization providing 2-aminofuran derivatives.
    Kondoh A; Ishikawa S; Aoki T; Terada M
    Chem Commun (Camb); 2016 Oct; 52(84):12513-12516. PubMed ID: 27711314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium-catalyzed allylic transposition of (allyloxy) iminodiazaphospholidines: a formal [3,3]-aza-phospha-oxa-Cope sigmatropic rearrangement for the stereoselective synthesis of allylic amines.
    Lee EE; Batey RA
    J Am Chem Soc; 2005 Oct; 127(42):14887-93. PubMed ID: 16231944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach.
    Kaur R; Singh RP
    J Org Chem; 2023 Aug; 88(15):10325-10338. PubMed ID: 37460945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of α-methoxyimidoyl ketonitrones via phosphite-mediated addition of α-keto N-tert-butanesulfinyl imidates to nitrosoarenes.
    Feng J; Ma PJ; Zeng YM; Xu YJ; Lu CD
    Chem Commun (Camb); 2018 Mar; 54(23):2882-2885. PubMed ID: 29493693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diastereoselective synthesis of 2-methoxyimidoyloxiranes via dimethyl phosphite-mediated coupling of α-keto N-sulfinyl imidates with aldehydes.
    Huang W; Liu H; Lu CD; Xu YJ
    Chem Commun (Camb); 2016 Nov; 52(93):13592-13595. PubMed ID: 27808337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.