These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24955823)

  • 1. Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents: DEET, IR3535, and picaridin.
    Sanford JL; Barski SA; Seen CM; Dickens JC; Shields VD
    PLoS One; 2014; 9(6):e99924. PubMed ID: 24955823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic insect repellent detector from the fruit fly Drosophila melanogaster.
    Syed Z; Pelletier J; Flounders E; Chitolina RF; Leal WS
    PLoS One; 2011 Mar; 6(3):e17705. PubMed ID: 21436880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lethal and behavioural effects of three synthetic repellents (DEET, IR3535 and KBR 3023) on Aedes aegypti mosquitoes in laboratory assays.
    Licciardi S; Herve JP; Darriet F; Hougard JM; Corbel V
    Med Vet Entomol; 2006 Sep; 20(3):288-93. PubMed ID: 17044879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commonly Used Insect Repellents Hide Human Odors from Anopheles Mosquitoes.
    Afify A; Betz JF; Riabinina O; Lahondère C; Potter CJ
    Curr Biol; 2019 Nov; 29(21):3669-3680.e5. PubMed ID: 31630950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulations of deet, picaridin, and IR3535 applied to skin repel nymphs of the lone star tick (Acari: Ixodidae) for 12 hours.
    Carroll JF; Benante JP; Kramer M; Lohmeyer KH; Lawrence K
    J Med Entomol; 2010 Jul; 47(4):699-704. PubMed ID: 20695288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insecticidal and Behavioral Avoidance Responses of Anopheles minimus and Culex quinquefasciatus (Diptera: Culicidae) to Three Synthetic Repellents.
    Boonyuan W; Sathantriphop S; Tainchum K; Muenworn V; Prabaripai A; Bangs MJ; Chareonviriyaphap T
    J Med Entomol; 2017 Sep; 54(5):1312-1322. PubMed ID: 28419272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.
    Sparks JT; Dickens JC
    Naturwissenschaften; 2016 Jun; 103(5-6):39. PubMed ID: 27108454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility of Dermacentor reticulatus tick to repellents containing different active ingrediens.
    Gliniewicz A; Borecka A; Przygodzka M; Mikulak E
    Przegl Epidemiol; 2019; 73(1):117-125. PubMed ID: 31134780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of antimicrobial properties of picaridin and DEET against a broad range of microorganisms.
    Kalaycı S; Demirci S; Sahin F
    World J Microbiol Biotechnol; 2014 Feb; 30(2):407-11. PubMed ID: 23933806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi.
    Klun JA; Khrimian A; Debboun M
    J Med Entomol; 2006 Jan; 43(1):34-9. PubMed ID: 16506445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Odorant receptor modulation: ternary paradigm for mode of action of insect repellents.
    Bohbot JD; Dickens JC
    Neuropharmacology; 2012 Apr; 62(5-6):2086-95. PubMed ID: 22269900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosquito repellents for the traveller: does picaridin provide longer protection than DEET?
    Goodyer L; Schofield S
    J Travel Med; 2018 May; 25(suppl_1):S10-S15. PubMed ID: 29718433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered behavioral responses of Sindbis virus-infected Aedes aegypti (Diptera: Culicidae) to DEET and non-DEET based insect repellents.
    Qualls WA; Day JF; Xue RD; Bowers DF
    Acta Trop; 2012 Jun; 122(3):284-90. PubMed ID: 22289669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No effect of insect repellents on the behaviour of Lymnaea stagnalis at environmentally relevant concentrations.
    Fink P; von Elert E
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):26120-26124. PubMed ID: 28944437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field evaluation of repellent formulations against daytime and nighttime biting mosquitoes in a tropical rainforest in northern Australia.
    Frances SP; Van Dung N; Beebe NW; Debboun M
    J Med Entomol; 2002 May; 39(3):541-4. PubMed ID: 12061453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insecticidal, acaricidal and repellent effects of DEET- and IR3535-impregnated bed nets using a novel long-lasting polymer-coating technique.
    Faulde MK; Albiez G; Nehring O
    Parasitol Res; 2010 Mar; 106(4):957-65. PubMed ID: 20162432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infodisruption of inducible anti-predator defenses through commercial insect repellents?
    von Elert E; Preuss K; Fink P
    Environ Pollut; 2016 Mar; 210():18-26. PubMed ID: 26708758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosquito odorant receptor for DEET and methyl jasmonate.
    Xu P; Choo YM; De La Rosa A; Leal WS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16592-7. PubMed ID: 25349401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect repellents and contact urticaria: differential response to DEET and picaridin.
    Shutty B; Swender D; Chernin L; Tcheurekdjian H; Hostoffer R
    Cutis; 2013 Jun; 91(6):280-2. PubMed ID: 23837149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field evaluations of topical arthropod repellents in North, Central, and South America.
    Lawrence KL; Achee NL; Bernier UR; Mundal KD; Benante JP
    J Med Entomol; 2014 Sep; 51(5):980-8. PubMed ID: 25276927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.