These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24955933)
1. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans. Choi H; Lee DG Biochimie; 2014 Oct; 105():58-63. PubMed ID: 24955933 [TBL] [Abstract][Full Text] [Related]
2. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans. Hwang JH; Jin Q; Woo ER; Lee DG Biochimie; 2013 Oct; 95(10):1917-22. PubMed ID: 23816874 [TBL] [Abstract][Full Text] [Related]
3. Antifungal property of dihydrodehydrodiconiferyl alcohol 9'-O-beta-D-glucoside and its pore-forming action in plasma membrane of Candida albicans. Choi H; Cho J; Jin Q; Woo ER; Lee DG Biochim Biophys Acta; 2012 Jul; 1818(7):1648-55. PubMed ID: 22406553 [TBL] [Abstract][Full Text] [Related]
4. Antifungal effect and mode of action of glochidioboside against Candida albicans membranes. Lee H; Choi H; Ko HJ; Woo ER; Lee DG Biochem Biophys Res Commun; 2014 Jan; 444(1):30-5. PubMed ID: 24434147 [TBL] [Abstract][Full Text] [Related]
5. Fungicidal mechanisms of the antimicrobial peptide Bac8c. Lee W; Lee DG Biochim Biophys Acta; 2015 Feb; 1848(2):673-9. PubMed ID: 25434926 [TBL] [Abstract][Full Text] [Related]
6. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans. Choi H; Hwang JS; Lee DG Biochim Biophys Acta; 2013 Nov; 1828(11):2745-50. PubMed ID: 23896552 [TBL] [Abstract][Full Text] [Related]
7. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Lee H; Hwang JS; Lee J; Kim JI; Lee DG Biochim Biophys Acta; 2015 Feb; 1848(2):634-42. PubMed ID: 25462167 [TBL] [Abstract][Full Text] [Related]
8. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Hwang B; Hwang JS; Lee J; Lee DG Biochem Biophys Res Commun; 2010 Sep; 400(3):352-7. PubMed ID: 20735987 [TBL] [Abstract][Full Text] [Related]
9. Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Sung WS; Lee J; Lee DG Biochem Biophys Res Commun; 2008 Jul; 371(3):551-5. PubMed ID: 18445475 [TBL] [Abstract][Full Text] [Related]
10. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Hwang B; Cho J; Hwang IS; Jin HG; Woo ER; Lee DG Biochem Biophys Res Commun; 2011 Jul; 410(3):489-93. PubMed ID: 21679690 [TBL] [Abstract][Full Text] [Related]
11. Membrane damage as first and DNA as the secondary target for anti-candidal activity of antimicrobial peptide P7 derived from cell-penetrating peptide ppTG20 against Candida albicans. Li L; Song F; Sun J; Tian X; Xia S; Le G J Pept Sci; 2016 Jun; 22(6):427-33. PubMed ID: 27197902 [TBL] [Abstract][Full Text] [Related]
12. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Nikawa H; Fukushima H; Makihira S; Hamada T; Samaranayake LP Oral Dis; 2004 Jul; 10(4):221-8. PubMed ID: 15196144 [TBL] [Abstract][Full Text] [Related]
13. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Choi H; Kim KJ; Lee DG Fungal Biol; 2017 Jan; 121(1):53-60. PubMed ID: 28007216 [TBL] [Abstract][Full Text] [Related]
14. Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans. Lee DG; Kim DH; Park Y; Kim HK; Kim HN; Shin YK; Choi CH; Hahm KS Biochem Biophys Res Commun; 2001 Mar; 282(2):570-4. PubMed ID: 11401498 [TBL] [Abstract][Full Text] [Related]
15. Influence of the papiliocin peptide derived from Papilio xuthus on the perturbation of fungal cell membranes. Lee J; Hwang JS; Hwang B; Kim JK; Kim SR; Kim Y; Lee DG FEMS Microbiol Lett; 2010 Oct; 311(1):70-5. PubMed ID: 20707816 [TBL] [Abstract][Full Text] [Related]
16. Fungicidal effect of piscidin on Candida albicans: pore formation in lipid vesicles and activity in fungal membranes. Sung WS; Lee J; Lee DG Biol Pharm Bull; 2008 Oct; 31(10):1906-10. PubMed ID: 18827353 [TBL] [Abstract][Full Text] [Related]
17. Membrane perturbation induced by papiliocin peptide, derived from Papilio xuthus, in Candida albicans. Lee J; Hwang JS; Hwang B; Kim JK; Kim SR; Kim Y; Lee DG J Microbiol Biotechnol; 2010 Aug; 20(8):1185-8. PubMed ID: 20798579 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Li L; Sun J; Xia S; Tian X; Cheserek MJ; Le G Appl Microbiol Biotechnol; 2016 Apr; 100(7):3245-53. PubMed ID: 26743655 [TBL] [Abstract][Full Text] [Related]
19. Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Lee DG; Park Y; Kim HN; Kim HK; Kim PI; Choi BH; Hahm KS Biochem Biophys Res Commun; 2002 Mar; 291(4):1006-13. PubMed ID: 11866466 [TBL] [Abstract][Full Text] [Related]
20. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. Lee SY; Lee BL; Söderhäll K J Biol Chem; 2003 Mar; 278(10):7927-33. PubMed ID: 12493771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]