These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24956178)

  • 41. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery.
    Garattini E; Terao M
    Drug Metab Rev; 2011 Aug; 43(3):374-86. PubMed ID: 21428696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phenylacetaldehyde oxidation by freshly prepared and cryopreserved guinea pig liver slices: the role of aldehyde oxidase.
    Panoutsopoulos GI
    Int J Toxicol; 2005; 24(2):103-9. PubMed ID: 16036769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular docking and two-dimensional quantitative structure-activity relationship studies of synthetic flavonoids on horseradish peroxidase compounds (I, II, and III).
    Mahfoudi R; Tahri D; Djeridane A; Yousfi M; Gaydou EM
    J Biochem Mol Toxicol; 2018 Dec; 32(12):e22222. PubMed ID: 30230144
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative QSAR studies of CYP1A2 inhibitor flavonoids using 2D and 3D descriptors.
    Roy K; Roy PP
    Chem Biol Drug Des; 2008 Nov; 72(5):370-82. PubMed ID: 19012573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for substrate-dependent inhibition profiles for human liver aldehyde oxidase.
    Barr JT; Jones JP
    Drug Metab Dispos; 2013 Jan; 41(1):24-9. PubMed ID: 22996261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics and molecular docking studies of kaempferol and its prenylated derivatives as aldose reductase inhibitors.
    Jung HA; Moon HE; Oh SH; Kim BW; Sohn HS; Choi JS
    Chem Biol Interact; 2012 May; 197(2-3):110-8. PubMed ID: 22543015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.
    Cos P; Ying L; Calomme M; Hu JP; Cimanga K; Van Poel B; Pieters L; Vlietinck AJ; Vanden Berghe D
    J Nat Prod; 1998 Jan; 61(1):71-6. PubMed ID: 9461655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. P56(lck) kinase inhibitor studies: a 3D QSAR approach towards designing new drugs from flavonoid derivatives.
    Gunda SK; Narasimha SK; Shaik M
    Int J Comput Biol Drug Des; 2014; 7(2-3):278-94. PubMed ID: 24878734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel spectrophotometric method for determination of kinetic constants of aldehyde oxidase using multivariate calibration method.
    Sorouraddin MH; Fooladi E; Naseri A; Rashidi MR
    J Biochem Biophys Methods; 2008 Apr; 70(6):999-1005. PubMed ID: 17936364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular Docking Studies of Flavonoids Derivatives on the Flavonoid 3- O-Glucosyltransferase.
    Harsa AM; Harsa TE; Diudea MV; Janezic D
    Curr Comput Aided Drug Des; 2015; 11(4):353-60. PubMed ID: 26694106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro effects of selected flavonoids on the 5'-nucleotidase activity.
    Kavutcu M; Melzig MF
    Pharmazie; 1999 Jun; 54(6):457-9. PubMed ID: 10399192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics.
    Romão MJ; Coelho C; Santos-Silva T; Foti A; Terao M; Garattini E; Leimkühler S
    Curr Opin Chem Biol; 2017 Apr; 37():39-47. PubMed ID: 28126656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-molecule pulling simulations can discern active from inactive enzyme inhibitors.
    Colizzi F; Perozzo R; Scapozza L; Recanatini M; Cavalli A
    J Am Chem Soc; 2010 Jun; 132(21):7361-71. PubMed ID: 20462212
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative structure-activity relationship to predict differential inhibition of aldose reductase by flavonoid compounds.
    Fernández M; Caballero J; Helguera AM; Castro EA; González MP
    Bioorg Med Chem; 2005 May; 13(9):3269-77. PubMed ID: 15809162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dietary flavonoids modulate CYP2C to improve drug oral bioavailability and their qualitative/quantitative structure-activity relationship.
    Wang HJ; Pao LH; Hsiong CH; Shih TY; Lee MS; Hu OY
    AAPS J; 2014 Mar; 16(2):258-68. PubMed ID: 24431079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase.
    Çelik H; Koşar M; Arinç E
    Toxicology; 2013 Jun; 308():34-40. PubMed ID: 23567315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzymatic oxidation of phthalazine with guinea pig liver aldehyde oxidase and liver slices: inhibition by isovanillin.
    Panoutsopoulos GI; Beedham C
    Acta Biochim Pol; 2004; 51(4):943-51. PubMed ID: 15625566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives.
    Soltani S; Hallaj-Nezhadi S; Rashidi MR
    Eur J Med Chem; 2021 Oct; 222():113559. PubMed ID: 34119831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymatic oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared Guinea pig liver slices.
    Panoutsopoulos GI; Beedham C
    Cell Physiol Biochem; 2005; 15(1-4):89-98. PubMed ID: 15665519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects.
    Takasawa R; Takahashi S; Saeki K; Sunaga S; Yoshimori A; Tanuma S
    Bioorg Med Chem; 2008 Apr; 16(7):3969-75. PubMed ID: 18258440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.