These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24956525)

  • 1. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain.
    Milner JS; Grol MW; Beaucage KL; Dixon SJ; Holdsworth DW
    J Funct Biomater; 2012 Mar; 3(1):209-24. PubMed ID: 24956525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Does Chondrolabral Damage and Labral Repair Influence the Mechanics of the Hip in the Setting of Cam Morphology? A Finite-Element Modeling Study.
    Todd JN; Maak TG; Anderson AE; Ateshian GA; Weiss JA
    Clin Orthop Relat Res; 2022 Mar; 480(3):602-615. PubMed ID: 34766936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2015; 2015():376474. PubMed ID: 25664319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of broad frequency vibration on cultured osteoblasts.
    Tanaka SM; Li J; Duncan RL; Yokota H; Burr DB; Turner CH
    J Biomech; 2003 Jan; 36(1):73-80. PubMed ID: 12485640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting cell viability within tissue scaffolds under equiaxial strain: multi-scale finite element model of collagen-cardiomyocytes constructs.
    Elsaadany M; Yan KC; Yildirim-Ayan E
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1049-1063. PubMed ID: 28093648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells.
    Masuda T; Takahashi I; Anada T; Arai F; Fukuda T; Takano-Yamamoto T; Suzuki O
    J Biotechnol; 2008 Jan; 133(2):231-8. PubMed ID: 17904677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis.
    Pauchard Y; Ivanov TG; McErlain DD; Milner JS; Giffin JR; Birmingham TB; Holdsworth DW
    J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25363041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of diameter, length and elastic modulus of a dental implant on stress and strain levels in peri-implant bone: A 3D finite element analysis.
    Robau-Porrua A; Pérez-Rodríguez Y; Soris-Rodríguez LM; Pérez-Acosta O; González JE
    Biomed Mater Eng; 2020; 30(5-6):541-558. PubMed ID: 31903978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell shape-dependent early responses of fibroblasts to cyclic strain.
    Gadhari N; Charnley M; Marelli M; Brugger J; Chiquet M
    Biochim Biophys Acta; 2013 Dec; 1833(12):3415-3425. PubMed ID: 24157374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained tibial vibration in mice: a method for studying the effects of vibrational loading of bone.
    Christiansen BA; Bayly PV; Silva MJ
    J Biomech Eng; 2008 Aug; 130(4):044502. PubMed ID: 18601464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology.
    Cao L; Guilak F; Setton LA
    Biomech Model Mechanobiol; 2011 Feb; 10(1):1-10. PubMed ID: 20376522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational simulation of cyclic stretch of an individual stem cell using a nonlinear model.
    Rahimpour E; Vahidi B; Mollahoseini Z
    J Tissue Eng Regen Med; 2019 Feb; 13(2):274-282. PubMed ID: 30556958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude.
    Haider IT; Lee M; Page R; Smith D; Edwards WB
    J Biomech; 2021 Jun; 122():110434. PubMed ID: 33910082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix.
    Mathieu PS; Bodle JC; Loboa EG
    J Biomech; 2014 Jun; 47(9):2211-7. PubMed ID: 24831236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3-D constitutive model for finite element analyses of agarose with a range of gel concentrations.
    Wang X; June RK; Pierce DM
    J Mech Behav Biomed Mater; 2021 Feb; 114():104150. PubMed ID: 33214108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.
    Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK
    Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.