These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 24956764)
1. Biological removal of methanethiol from gas and water streams by using Thiobacillus thioparus: investigation of biodegradability and optimization of sulphur production. Badr K; Bahmania M; Jahanmiri A; Mowla D Environ Technol; 2014 Aug; 35(13-16):1729-35. PubMed ID: 24956764 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur. Sipma J; Janssen AJ; Pol LW; Lettinga G Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619 [TBL] [Abstract][Full Text] [Related]
3. A biological process that reduces metals in municipal sludge to yield sulphur enhanced biosolids. Seth R; Henry JG; Prasad D Environ Technol; 2006 Feb; 27(2):159-67. PubMed ID: 16506512 [TBL] [Abstract][Full Text] [Related]
4. Microbial monitoring and performance evaluation for H2S biological air emissions control at a wastewater lift station in South Texas, USA. Jones KD; Yadavalli N; Karre AK; Paca J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):949-63. PubMed ID: 22486664 [TBL] [Abstract][Full Text] [Related]
5. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Kanagawa T; Mikami E Appl Environ Microbiol; 1989 Mar; 55(3):555-8. PubMed ID: 2930168 [TBL] [Abstract][Full Text] [Related]
6. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen sulfide gas treatment by a chemical-biological process: chemical absorption and biological oxidation steps. Chung YC; Ho KL; Tseng CP J Environ Sci Health B; 2003 Sep; 38(5):663-79. PubMed ID: 12929723 [TBL] [Abstract][Full Text] [Related]
8. Influence of methanethiol on biological sulphide oxidation in gas treatment system. Roman P; Bijmans MF; Janssen AJ Environ Technol; 2016; 37(13):1693-703. PubMed ID: 26652658 [TBL] [Abstract][Full Text] [Related]
9. A novel up-flow inner-cycle anoxic bioreactor (UIAB) system for the treatment of sulfide wastewater from purification of biogas. Song Z; Li Q; Wang D; Zhang J; Xing J Water Sci Technol; 2012; 65(6):1033-40. PubMed ID: 22377999 [TBL] [Abstract][Full Text] [Related]
10. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Malhotra S; Tankhiwale AS; Rajvaidya AS; Pandey RA Bioresour Technol; 2002 Dec; 85(3):225-34. PubMed ID: 12365488 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the bio-oxidation of volatile reduced sulphur compounds in a biotrickling filter. Cáceres M; Silva J; Morales M; San Martín R; Aroca G Bioresour Technol; 2012 Aug; 118():243-8. PubMed ID: 22705530 [TBL] [Abstract][Full Text] [Related]
12. Optimization of biological sulfide removal in a CSTR bioreactor. Roosta A; Jahanmiri A; Mowla D; Niazi A; Sotoodeh H Bioprocess Biosyst Eng; 2012 Aug; 35(6):1005-10. PubMed ID: 22252421 [TBL] [Abstract][Full Text] [Related]
14. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen sulfide removal by immobilized Thiobacillus novellas on SiO2 in a fluidized bed reactor. Cha JM; Shin HJ; Roh SH; Kim SI J Microbiol Biotechnol; 2007 Feb; 17(2):320-4. PubMed ID: 18051764 [TBL] [Abstract][Full Text] [Related]
16. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01. Potumarthi R; Mugeraya G; Jetty A Appl Biochem Biotechnol; 2008 Dec; 151(2-3):532-46. PubMed ID: 18574569 [TBL] [Abstract][Full Text] [Related]
17. Effect of Methanethiol Concentration on Sulfur Production in Biological Desulfurization Systems under Haloalkaline Conditions. Roman P; Veltman R; Bijmans MF; Keesman KJ; Janssen AJ Environ Sci Technol; 2015 Aug; 49(15):9212-21. PubMed ID: 26154624 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization. van Leerdam RC; Bonilla-Salinas M; de Bok FA; Bruning H; Lens PN; Stams AJ; Janssen AJ Biotechnol Bioeng; 2008 Nov; 101(4):691-701. PubMed ID: 18814290 [TBL] [Abstract][Full Text] [Related]
19. Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors. Klok JB; van den Bosch PL; Buisman CJ; Stams AJ; Keesman KJ; Janssen AJ Environ Sci Technol; 2012 Jul; 46(14):7581-6. PubMed ID: 22697609 [TBL] [Abstract][Full Text] [Related]
20. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Chen SY; Lin JG Water Res; 2004; 38(14-15):3205-14. PubMed ID: 15276736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]