These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 24956791)

  • 21. Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents.
    Johari K; Saman N; Mat H
    Environ Technol; 2014; 35(5-8):629-36. PubMed ID: 24645442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Needle microextraction trap for on-site analysis of airborne volatile compounds at ultra-trace levels in gaseous samples.
    Alonso M; Godayol A; Antico E; Sanchez JM
    J Sep Sci; 2011 Oct; 34(19):2705-11. PubMed ID: 21818851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: optimization study.
    Lau LC; Lee KT; Mohamed AR
    J Hazard Mater; 2010 Nov; 183(1-3):738-45. PubMed ID: 20724075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of control parameters for the sulfur gas storability with bag sampling methods.
    Jo SH; Kim KH; Shon ZH; Parker D
    Anal Chim Acta; 2012 Aug; 738():51-8. PubMed ID: 22790700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fundamental properties of the direct injection method in the analysis of gaseous reduced sulfur by gas chromatography with a pulsed flame photometric detector.
    Pandey SK; Kim KH
    Anal Chim Acta; 2008 May; 615(2):165-73. PubMed ID: 18442522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal.
    Dahlan I; Lee KT; Kamaruddin AH; Mohamed AR
    J Hazard Mater; 2009 Jul; 166(2-3):1556-9. PubMed ID: 19147280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study of sorptive loss patterns for reduced sulfur compounds in the use of the bag sampling method.
    Kim KH
    Environ Monit Assess; 2006 Dec; 123(1-3):259-69. PubMed ID: 16779574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A case study for removal of sulphur-di-oxide from exhaust flue gases at thermal power plant, Rajasthan (India).
    Sharma R; Acharya S; Sharma AK
    J Environ Sci Eng; 2011 Jan; 53(1):31-8. PubMed ID: 22324143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of various detection limit estimates for volatile sulphur compounds by gas chromatography with pulsed flame photometric detection.
    Catalan LJ; Liang V; Jia CQ
    J Chromatogr A; 2006 Dec; 1136(1):89-98. PubMed ID: 17069822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Field instrument for simultaneous large dynamic range measurement of atmospheric hydrogen sulfide, methanethiol, and sulfur dioxide.
    Toda K; Ohira S; Tanaka T; Nishimura T; Dasgupta PK
    Environ Sci Technol; 2004 Mar; 38(5):1529-36. PubMed ID: 15046356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical role of a pre-purge setup in the thermal desorption analysis of volatile organic compounds by gas chromatography with mass spectrometry.
    Kim YH; Kim KH
    J Sep Sci; 2015 Jul; 38(14):2455-62. PubMed ID: 25960339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multisorbent tubes for collecting volatile organic compounds in spacecraft air.
    Matney ML; Beck SW; Limero TF; James JT
    AIHAJ; 2000; 61(1):69-75. PubMed ID: 10772617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection.
    Khan MA; Whelan ME; Rhew RC
    Talanta; 2012 Jan; 88():581-6. PubMed ID: 22265544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of sulphur gases in ambient air.
    Lau YK
    Environ Monit Assess; 1989 Aug; 13(1):69-74. PubMed ID: 24243111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites.
    Dou B; Li J; Wang Y; Wang H; Ma C; Hao Z
    J Hazard Mater; 2011 Nov; 196():194-200. PubMed ID: 21962860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles.
    Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ
    Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of sulfur dioxide by adsorption on a solid sorbent followed by ion chromatography analysis.
    Smith DL; Kim WS; Kupel RE
    Am Ind Hyg Assoc J; 1980 Jul; 41(7):485-8. PubMed ID: 7415968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of adsorbents for volatile methyl siloxanes sampling based on the determination of their breakthrough volume.
    Lamaa L; Ferronato C; Fine L; Jaber F; Chovelon JM
    Talanta; 2013 Oct; 115():881-6. PubMed ID: 24054678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel approach to test the relative recovery of liquid-phase standard in sorbent-tube analysis of gaseous volatile organic compounds.
    Kim YH; Kim KH
    Anal Chem; 2012 May; 84(9):4126-39. PubMed ID: 22468653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of airborne toxic chemicals by porous organic polymers containing metal-catecholates.
    Weston MH; Peterson GW; Browe MA; Jones P; Farha OK; Hupp JT; Nguyen ST
    Chem Commun (Camb); 2013 Apr; 49(29):2995-7. PubMed ID: 23463320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.