These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24956896)

  • 41. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling.
    Yang J; Zhang J; Wang Z; Zhu Q; Liu L
    Planta; 2002 Aug; 215(4):645-52. PubMed ID: 12172848
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1.
    Pedas P; Ytting CK; Fuglsang AT; Jahn TP; Schjoerring JK; Husted S
    Plant Physiol; 2008 Sep; 148(1):455-66. PubMed ID: 18614714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes.
    Hu L; McBride MB; Cheng H; Wu J; Shi J; Xu J; Wu L
    Environ Res; 2011 Apr; 111(3):356-61. PubMed ID: 21316043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A screening method to identify genetic variation in root growth response to a salinity gradient.
    Rahnama A; Munns R; Poustini K; Watt M
    J Exp Bot; 2011 Jan; 62(1):69-77. PubMed ID: 21118825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.).
    Tani FH; Barrington S
    Environ Pollut; 2005 Dec; 138(3):538-47. PubMed ID: 16043273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment I. Differential growth response, P-efficiency characteristics and P-remobilization.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1008-23. PubMed ID: 19903223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of External and Internal Phosphorus Sources to Grain P Loading in Durum Wheat (
    El Mazlouzi M; Morel C; Chesseron C; Robert T; Mollier A
    Front Plant Sci; 2020; 11():870. PubMed ID: 32625228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus Efficiency Mechanisms of Two Wheat Cultivars as Affected by a Range of Phosphorus Levels in the Field.
    Deng Y; Teng W; Tong YP; Chen XP; Zou CQ
    Front Plant Sci; 2018; 9():1614. PubMed ID: 30459796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cytological changes in Turkish durum and bread wheat genotypes in response to salt stress.
    Yumurtaci A; Aydin Y; Uncuoglu AA
    Acta Biol Hung; 2009 Jun; 60(2):221-32. PubMed ID: 19584031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.
    Ueno D; Koyama E; Yamaji N; Ma JF
    J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum.
    Winter M; Koopmann B; Döll K; Karlovsky P; Kropf U; Schlüter K; von Tiedemann A
    Phytopathology; 2013 Jul; 103(7):682-9. PubMed ID: 23758328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain.
    Liu J; Qian M; Cai G; Yang J; Zhu Q
    J Hazard Mater; 2007 May; 143(1-2):443-7. PubMed ID: 17079078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Difference in nitrogen accumulation and translocation between semi-winterness and springness wheat.].
    Dong ZD; Guo MM; Yi Y; Zhang MW; Zhu XK; Feng CN; Guo WS
    Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1910-1916. PubMed ID: 29737699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil.
    Shi M; Wang X; Wang H; Guo Z; Wang R; Hui X; Wang S; Kopittke PM; Wang Z
    Sci Total Environ; 2021 Sep; 787():147608. PubMed ID: 34000558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screening of wheat varieties and associated bacterial population in old alluvial soil of Burdwan, West Bengal.
    Datta JK; Chakraborty S; Gupta S; Saha RN; Mondal N
    J Environ Biol; 2007 Jan; 28(1):11-4. PubMed ID: 17717978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.).
    Rico CM; Lee SC; Rubenecia R; Mukherjee A; Hong J; Peralta-Videa JR; Gardea-Torresdey JL
    J Agric Food Chem; 2014 Oct; 62(40):9669-75. PubMed ID: 25220448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responses of contrasting rice genotypes to excess manganese and their implications for lignin synthesis.
    Dziwornu AK; Shrestha A; Matthus E; Ali B; Wu LB; Frei M
    Plant Physiol Biochem; 2018 Feb; 123():252-259. PubMed ID: 29257997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Translocation of elements and sugars in wheat genotypes at vegetative and generative stages under continuous selenium exposure.
    Filek M; Sieprawska A; Telk A; Łabanowska M; Kurdziel M; Walas S; Hartikainen H
    J Sci Food Agric; 2019 Nov; 99(14):6364-6371. PubMed ID: 31273805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wheat responses to sodium vary with potassium use efficiency of cultivars.
    Krishnasamy K; Bell R; Ma Q
    Front Plant Sci; 2014; 5():631. PubMed ID: 25426133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.