BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24956931)

  • 1. Regional assessment of CO2-solubility trapping potential: a case study of the coastal and offshore Texas Miocene interval.
    Yang C; Treviño RH; Zhang T; Romanak KD; Wallace K; Lu J; Mickler PJ; Hovorka SD
    Environ Sci Technol; 2014 Jul; 48(14):8275-82. PubMed ID: 24956931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of CO₂ solubility-trapping and mineral-trapping in microbial-mediated CO₂-brine-sandstone interaction.
    Zhao J; Lu W; Zhang F; Lu C; Du J; Zhu R; Sun L
    Mar Pollut Bull; 2014 Aug; 85(1):78-85. PubMed ID: 25015018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequestration of dissolved CO2 in the Oriskany formation.
    Dilmore RM; Allen DE; Jones JR; Hedges SW; Soong Y
    Environ Sci Technol; 2008 Apr; 42(8):2760-6. PubMed ID: 18497120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Vinegar & Wellington calibration for estimation of fluid saturation and porosity from CT images for a core flooding test under geologic carbon storage conditions.
    Miao X; Wang Y; Zhang L; Wei N; Li X
    Micron; 2019 Sep; 124():102703. PubMed ID: 31284162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumetrics of CO2 storage in deep saline formations.
    Steele-MacInnis M; Capobianco RM; Dilmore R; Goodman A; Guthrie G; Rimstidt JD; Bodnar RJ
    Environ Sci Technol; 2013 Jan; 47(1):79-86. PubMed ID: 22916959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).
    Zhang X; Miao J; Hu BX; Liu H; Zhang H; Ma Z
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21073-21090. PubMed ID: 28730358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of H2S injection on the CO2-brine-sandstone interaction under 21MPa and 70°C.
    Li C; Zhang F; Lyu C; Hao J; Song J; Zhang S
    Mar Pollut Bull; 2016 May; 106(1-2):17-24. PubMed ID: 27038880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.
    Yang C; Dai Z; Romanak KD; Hovorka SD; Treviño RH
    Environ Sci Technol; 2014; 48(5):2798-806. PubMed ID: 24494823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled Geochemical Impacts of Leaking CO2 and Contaminants from Subsurface Storage Reservoirs on Groundwater Quality.
    Shao H; Qafoku NP; Lawter AR; Bowden ME; Brown CF
    Environ Sci Technol; 2015 Jul; 49(13):8202-9. PubMed ID: 26039150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2010 Aug; 44(15):5999-6005. PubMed ID: 20586472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.
    Wang S; Tokunaga TK
    Environ Sci Technol; 2015 Jun; 49(12):7208-17. PubMed ID: 25945400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Sell K; Enzmann F; Kersten M; Spangenberg E
    Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement and estimation of CO
    Mutailipu M; Liu Y; Jiang L; Zhang Y
    J Colloid Interface Sci; 2019 Jan; 534():605-617. PubMed ID: 30265988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions.
    Carroll SA; McNab WW; Torres SC
    Geochem Trans; 2011 Nov; 12(1):9. PubMed ID: 22078161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.
    Mitchell AC; Dideriksen K; Spangler LH; Cunningham AB; Gerlach R
    Environ Sci Technol; 2010 Jul; 44(13):5270-6. PubMed ID: 20540571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphase modeling of geologic carbon sequestration in saline aquifers.
    Bandilla KW; Celia MA; Birkholzer JT; Cihan A; Leister EC
    Ground Water; 2015; 53(3):362-77. PubMed ID: 25662534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.