BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24957138)

  • 1. Do glial cells play an anti-oxidative role in Huntington's disease?
    Gao Y; Chu SF; Li JP; Zuo W; Wen ZL; He WB; Yan JQ; Chen NH
    Free Radic Res; 2014 Oct; 48(10):1135-44. PubMed ID: 24957138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probucol modulates oxidative stress and excitotoxicity in Huntington's disease models in vitro.
    Colle D; Hartwig JM; Soares FA; Farina M
    Brain Res Bull; 2012 Mar; 87(4-5):397-405. PubMed ID: 22245028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.
    Trushina E; McMurray CT
    Neuroscience; 2007 Apr; 145(4):1233-48. PubMed ID: 17303344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease.
    Besson MT; Dupont P; Fridell YW; Liévens JC
    Hum Mol Genet; 2010 Sep; 19(17):3372-82. PubMed ID: 20566711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington's disease.
    Ryu JK; Kim SU; McLarnon JG
    Exp Neurol; 2004 May; 187(1):150-9. PubMed ID: 15081596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants.
    Stack EC; Matson WR; Ferrante RJ
    Ann N Y Acad Sci; 2008 Dec; 1147():79-92. PubMed ID: 19076433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidizing effects of exogenous stressors in Huntington's disease knock-in striatal cells--protective effect of cystamine and creatine.
    Ribeiro M; Silva AC; Rodrigues J; Naia L; Rego AC
    Toxicol Sci; 2013 Dec; 136(2):487-99. PubMed ID: 24008831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The molecular bases of Huntington's disease: the role played by oxidative stress].
    Tasset I; Sánchez F; Túnez I
    Rev Neurol; 2009 Oct 16-31; 49(8):424-9. PubMed ID: 19816846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
    de Vries HE; Witte M; Hondius D; Rozemuller AJ; Drukarch B; Hoozemans J; van Horssen J
    Free Radic Biol Med; 2008 Nov; 45(10):1375-83. PubMed ID: 18824091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radical damage and oxidative stress in Huntington's disease.
    Borlongan CV; Kanning K; Poulos SG; Freeman TB; Cahill DW; Sanberg PR
    J Fla Med Assoc; 1996 May; 83(5):335-41. PubMed ID: 8666972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis and oxidative stress in neurodegenerative diseases.
    Radi E; Formichi P; Battisti C; Federico A
    J Alzheimers Dis; 2014; 42 Suppl 3():S125-52. PubMed ID: 25056458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early modulation of the transcription factor Nrf2 in rodent striatal slices by quinolinic acid, a toxic metabolite of the kynurenine pathway.
    Colín-González AL; Luna-López A; Königsberg M; Ali SF; Pedraza-Chaverrí J; Santamaría A
    Neuroscience; 2014 Feb; 260():130-9. PubMed ID: 24361737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of iron imaging in Huntington's disease.
    van den Bogaard SJ; Dumas EM; Roos RA
    Int Rev Neurobiol; 2013; 110():241-50. PubMed ID: 24209441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington's disease.
    Chen CM
    Chang Gung Med J; 2011; 34(2):135-52. PubMed ID: 21539755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review.
    Manoharan S; Guillemin GJ; Abiramasundari RS; Essa MM; Akbar M; Akbar MD
    Oxid Med Cell Longev; 2016; 2016():8590578. PubMed ID: 28116038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.
    Kumar A; Ratan RR
    J Huntingtons Dis; 2016 Oct; 5(3):217-237. PubMed ID: 27662334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress in neurodegenerative diseases.
    Chen X; Guo C; Kong J
    Neural Regen Res; 2012 Feb; 7(5):376-85. PubMed ID: 25774178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington's disease: Possibilities for neural-glial transition in the brain.
    Manickam N; Radhakrishnan RK; Vergil Andrews JF; Selvaraj DB; Kandasamy M
    Life Sci; 2020 Dec; 263():118569. PubMed ID: 33049278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.