These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24957170)

  • 1. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge.
    Mullett M; Fornarelli R; Ralph D
    Membranes (Basel); 2014 Mar; 4(2):163-80. PubMed ID: 24957170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rejection Capacity of Nanofiltration Membranes for Nickel, Copper, Silver and Palladium at Various Oxidation States.
    Thabo B; Okoli BJ; Modise SJ; Nelana S
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints.
    Conesa HM; Schulin R; Nowack B
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):657-64. PubMed ID: 19816728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafiltration and nanofiltration in the pulp and paper industry using cross-rotational (CR) filters.
    Mänttäri M; Nyström M
    Water Sci Technol; 2004; 50(3):229-38. PubMed ID: 15461417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine.
    Santos AL; Johnson DB
    Front Microbiol; 2018; 9():2051. PubMed ID: 30214439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: Transport modeling and pore radius estimation.
    Taheri E; Hadi S; Amin MM; Ebrahimi A; Fatehizadeh A; Aminabhavi TM
    J Environ Manage; 2020 Oct; 271():111005. PubMed ID: 32778290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters.
    López J; Reig M; Vecino X; Gibert O; Cortina JL
    Sci Total Environ; 2020 Oct; 738():139780. PubMed ID: 32526411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on Total Volume Membrane Charge Density in the Nanofiltration of Aqueous Solutions of Nitrate Salts of Heavy Metals.
    Marecka-Migacz A; Mitkowski PT; Nędzarek A; Różański J; Szaferski W
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32937943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Layer-By-Layer Modified Nanofiltration Membrane Stability in Phosphoric Acid.
    Remmen K; Müller B; Köser J; Wessling M; Wintgens T
    Membranes (Basel); 2020 Apr; 10(4):. PubMed ID: 32260137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on transmembrane electrical potential of nanofiltration membranes in KCl and MgCl2 solutions.
    Tu CH; Wang HL; Wang XL
    Langmuir; 2010 Nov; 26(22):17656-64. PubMed ID: 20942428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance.
    Wei XZ; Gan ZQ; Shen YJ; Qiu ZL; Fang LF; Zhu BK
    J Colloid Interface Sci; 2019 Oct; 553():475-483. PubMed ID: 31229866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of ferric coagulant on gypsum scaling and ion interception efficiency in nanofiltration at different pH values: Performance and mechanism.
    Lin D; Bai L; Gan Z; Zhao J; Li G; Aminabhavi TM; Liang H
    Water Res; 2020 May; 175():115695. PubMed ID: 32172057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling.
    Nayak V; Cuhorka J; Mikulášek P
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-flux TFN nanofiltration membranes incorporated with Camphor-Al
    Kotp YH
    Chemosphere; 2021 Feb; 265():128999. PubMed ID: 33302199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer.
    Bar C; Çağlar N; Uz M; Mallapragada SK; Altinkaya SA
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31367-31377. PubMed ID: 31424905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance.
    Xiao F; Hu X; Chen Y; Zhang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47390-47403. PubMed ID: 31729858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(aryl cyanurate)-Based Thin-Film Composite Nanofiltration Membranes.
    Elshof MG; Maaskant E; Hempenius MA; Benes NE
    ACS Appl Polym Mater; 2021 May; 3(5):2385-2392. PubMed ID: 34056614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.